导入复变函数的积分,需要按顺序导入以下内容

  • 复数值的实数变量函数在线段(区间)上的积分
  • 复变函数 ff 沿复平面上的 C1C^1 曲线路径积分
  • 复变函数沿路积分

# 区间积分

对于 复数值 函数 f(t):[a,b]Cf(t):[a,b] \to \mathbb C,由于实部虚部分别为实变函数,可以通过实变积分延拓

定义
Ref(t),Imf(t)\mathrm{Re} f(t),\ \mathrm{Im} f(t) 在区间 [a,b][a,b] 上可积,则称复数值 f(t)f(t)[a,b][a,b] 上可积,定义其积分为

abf(t)dt=abRef(t)dt+iabImf(t)dt\int_a^b f(t) \, dt = \int_a^b \mathrm{Re} f(t) \, dt + i \int_a^b \mathrm{Im} f(t) \, dt

此时实际上可以由连续性推出可积性,注意以下逻辑

f连续Ref,Imf连续Ref,Imf可积f可积f \text{ 连续} \iff \mathrm{Re} f, \mathrm{Im} f \text{ 连续} \implies \mathrm{Re} f, \mathrm{Im} f \text{ 可积} \iff f \text{ 可积}

并且显然定义给出

  • Re(abf(t)dt)=abRef(t)dt\mathrm{Re} \left(\int_a^b f(t) \, dt\right) = \int_a^b \mathrm{Re} f(t) \, dt
  • Im(abf(t)dt)=abImf(t)dt\mathrm{Im} \left(\int_a^b f(t) \, dt\right) = \int_a^b \mathrm{Im} f(t) \, dt

命题 积分基本性质
f,g:[a,b]Cf,g:[a,b] \to \mathbb C 可积,则

  • (线性)对于 α,βC\alpha, \beta \in \mathbb C,有 ab[αf(t)+βg(t)]dt=αabf(t)dt+βabg(t)dt\displaystyle \int_a^b [\alpha f(t) + \beta g(t)] \, dt = \alpha \int_a^b f(t) \, dt + \beta \int_a^b g(t) \, dt
  • (积分不等式)abf(t)dtabf(t)dt\displaystyle \left| \int_a^b f(t) \, dt \right| \leq \int_a^b |f(t)| \, dt
证明

(线性性)

ab[αf(t)+βg(t)]dt=ab[αRef(t)+βReg(t)]dt+iab[αImf(t)+βImg(t)]dt=αabRef(t)dt+βabReg(t)dt+i(αabImf(t)dt+βabImg(t)dt)=αabf(t)dt+βabg(t)dt\begin{aligned} \int_a^b [\alpha f(t) + \beta g(t)] \,dt &= \int_a^b [\alpha \mathrm{Re} f(t) + \beta \mathrm{Re} g(t)] \, dt +i \int_a^b [\alpha \mathrm{Im} f(t) + \beta \mathrm{Im} g(t)] \, dt \\ &= \alpha \int_a^b \mathrm{Re} f(t) \, dt + \beta \int_a^b \mathrm{Re} g(t) \, dt +i \left( \alpha \int_a^b \mathrm{Im} f(t) \, dt + \beta \int_a^b \mathrm{Im} g(t) \, dt \right) \\ &= \alpha \int_a^b f(t) \, dt + \beta \int_a^b g(t) \, dt \end{aligned}

(积分不等式)
取极坐标表示 abf(t)dt=Reiθ\int_a^b f(t) \, dt = R e^{i\theta},其中 R=abf(t)dtR = |\int_a^b f(t) \, dt|,则

abf(t)dt=eiθabf(t)dt=abeiθf(t)dtR=abRe(eiθf(t))dtabeiθf(t)dt=abf(t)dt\begin{aligned} \left| \int_a^b f(t) \, dt \right| &= e^{-i\theta} \int_a^b f(t) \, dt\\ &= \int_a^b e^{-i\theta} f(t) \, dt \in \mathbb R\\ &= \int_a^b \mathrm{Re} \left( e^{-i\theta} f(t) \right) \, dt \\ &\leq \int_a^b \left| e^{-i\theta} f(t) \right| \, dt \\ &= \int_a^b |f(t)| \, dt \end{aligned}

\square

# 路径积分

接下来考虑 ff 沿复平面上的 C1C^1 曲线路径积分
f:DCf:D \to \mathbb C 连续,DCD \subset \mathbb C
曲线 γ:[a,b]D\gamma:[a,b] \to D,规定以下记号

  • 曲线的像记为 γ\gamma^*
  • 曲线的起点记为 S(γ)S(\gamma),终点记为 E(γ)E(\gamma)
  • 方向逆转的曲线记为 γ-\gamma
  • 由两根曲线拼接而成的曲线记为 γ1γ2\gamma_1 \vee \gamma_2

定义
定义复变函数 ff 沿曲线 γ\gamma 的积分为

γf(z)dz:=abf(γ(t))γ(t)dt\int_\gamma f(z) \, dz := \int_a^b f(\gamma(t)) \gamma'(t) \, dt

由此,化归为实数变量,复数值的函数积分问题

命题 积分基本性质
f,g:DCf,g:D \to \mathbb C 连续,DCD \subset \mathbb C
曲线 γ,γ1,γ2:[a,b]D\gamma,\gamma_1,\gamma_2:[a,b] \to DC1C^1 级,则

  • (反向路径)γf(z)dz=γf(z)dz\displaystyle \int_{-\gamma} f(z) \, dz = - \int_\gamma f(z) \, dz
  • (曲线拼接)γ1γ2f(z)dz=γ1f(z)dz+γ2f(z)dz\displaystyle \int_{\gamma_1 \vee \gamma_2} f(z) \, dz = \int_{\gamma_1} f(z) \, dz + \int_{\gamma_2} f(z) \, dz
  • (线性性)对于 λC,γ[λf(z)+g(z)]dz=λγf(z)dz+γg(z)dz\lambda \in \mathbb C, \ \displaystyle \int_\gamma [\lambda f(z) + g(z)] \, dz = \lambda \int_\gamma f(z) \, dz + \int_\gamma g(z) \, dz
  • (积分不等式)γf(z)dzγf(z)dzML(γ)\displaystyle\left| \int_\gamma f(z) \, dz \right| \leq \int_\gamma |f(z)| \, |dz| \leq M L(\gamma),其中 M=maxzγf(z)M = \max\limits_{z \in \gamma^*} |f(z)|
证明

(反向路径)

γf(z)dz=abf(γ(a+bt))γ(a+bt)dt=baf(γ(s))γ(s)(ds)(s=a+bt)=abf(γ(s))γ(s)ds=γf(z)dz\begin{aligned} \int_{-\gamma} f(z) \, dz &= \int_a^b f(\gamma(a+b-t)) \gamma'(a+b-t) \, dt \\ &= \int_b^a f(\gamma(s)) \gamma'(s) \, (-ds) \quad (s = a+b-t) \\ &= - \int_a^b f(\gamma(s)) \gamma'(s) \, ds \\ &= - \int_\gamma f(z) \, dz \end{aligned}

(曲线拼接)

γ1γ2f(z)dz=abf((γ1γ2)(t))(γ1γ2)(t)dt=a(a+b)/2f(γ1(2ta))2γ1(2ta)dt+(a+b)/2bf(γ2(2tb))2γ2(2tb)dt=abf(γ1(s))γ1(s)ds+abf(γ2(s))γ2(s)ds(s=2taor2tb)=γ1f(z)dz+γ2f(z)dz\begin{aligned} \int_{\gamma_1 \vee \gamma_2} f(z) \, dz &= \int_a^b f((\gamma_1 \vee \gamma_2)(t)) (\gamma_1 \vee \gamma_2)'(t) \, dt \\ &= \int_a^{(a+b)/2} f(\gamma_1(2t - a)) \cdot 2 \gamma_1'(2t - a) \, dt +\int_{(a+b)/2}^b f(\gamma_2(2t - b)) \cdot 2 \gamma_2'(2t - b) \, dt \\ &= \int_a^b f(\gamma_1(s)) \gamma_1'(s) \, ds + \int_a^b f(\gamma_2(s)) \gamma_2'(s) \, ds \quad (s = 2t - a \text{ or } 2t - b) \\ &= \int_{\gamma_1} f(z) \, dz + \int_{\gamma_2} f(z) \, dz \end{aligned}

(线性性)

γ[λf(z)+g(z)]dz=ab[λf(γ(t))+g(γ(t))]γ(t)dt=λabf(γ(t))γ(t)dt+abg(γ(t))γ(t)dt=λγf(z)dz+γg(z)dz\begin{aligned} \int_\gamma [\lambda f(z) + g(z)] \, dz &= \int_a^b [\lambda f(\gamma(t)) + g(\gamma(t))] \gamma'(t) \, dt \\ &= \lambda \int_a^b f(\gamma(t)) \gamma'(t) \, dt + \int_a^b g(\gamma(t)) \gamma'(t) \, dt \\ &= \lambda \int_\gamma f(z) \, dz + \int_\gamma g(z) \, dz \end{aligned}

(积分不等式)

γf(z)dz=abf(γ(t))γ(t)dtabf(γ(t))γ(t)dt=γf(z)dzMabγ(t)dt=ML(γ)\begin{aligned} \left| \int_\gamma f(z) \, dz \right| &= \left| \int_a^b f(\gamma(t)) \gamma'(t) \, dt \right| \\ &\leq \int_a^b |f(\gamma(t))| \cdot |\gamma'(t)| \, dt \\ &= \int_\gamma |f(z)| \, |dz| \\ &\leq M \int_a^b |\gamma'(t)| \, dt = M L(\gamma) \end{aligned}

\square

最后是复变函数沿路积分,关于路定义如下
对于曲线 γ:[a,b]C\gamma:[a,b] \to \mathbb C

  • γ\gamma 为路径,若 γ\gamma 连续且可被分割为有限段 C1C^1 曲线的路径(分段光滑)
  • γ\gamma 为闭路径,若 S(γ)=E(γ)S(\gamma) = E(\gamma)

定义
f:DCf:D \to \mathbb C 连续,DCD \subset \mathbb C
对于路径 γ:[a,b]D\gamma:[a,b] \to D,定义复变函数 ff 沿路径 γ\gamma 的积分为

γf(z)dz:=i=1nγif(z)dz\int_\gamma f(z) \, dz := \sum_{i=1}^n \int_{\gamma_i} f(z) \, dz

其中 γi\gamma_i 为将 γ\gamma 分割为的 nnC1C^1 曲线

命题 积分基本性质
f,g:DCf,g:D \to \mathbb C 连续,DCD \subset \mathbb C
路径 γ,γ1,γ2:[a,b]D\gamma,\gamma_1,\gamma_2:[a,b] \to D 为路径,则

  • (反向路径)γf(z)dz=γf(z)dz\displaystyle \int_{-\gamma} f(z) \, dz = - \int_\gamma f(z) \, dz
  • (路径拼接)γ1γ2f(z)dz=γ1f(z)dz+γ2f(z)dz\displaystyle \int_{\gamma_1 \vee \gamma_2} f(z) \, dz = \int_{\gamma_1} f(z) \, dz + \int_{\gamma_2} f(z) \, dz
  • (线性性)对于 λC,γ[λf(z)+g(z)]dz=λγf(z)dz+γg(z)dz\lambda \in \mathbb C, \ \displaystyle \int_\gamma [\lambda f(z) + g(z)] \, dz = \lambda \int_\gamma f(z) \, dz + \int_\gamma g(z) \, dz
  • (积分不等式)γf(z)dzγf(z)dzML(γ)\displaystyle\left| \int_\gamma f(z) \, dz \right| \leq \int_\gamma |f(z)| \, |dz| \leq M L(\gamma),其中 M=maxzγf(z)M = \max\limits_{z \in \gamma^*} |f(z)|
证明

与分段光滑的定义类似,均可通过对每一段 C1C^1 曲线应用相应命题,然后将结果相加得到整体结论,证明过程与之前完全相同,此处省略
\square

至此,复变函数的积分完整定义完毕

# 微积分基本定理

定理 复变函数微积分基本定理
DCD \subset \mathbb C 为开集,f:DCf:D \to \mathbb C 连续
F:DCF:D \to \mathbb CffDD 上的原函数,即 zD,F(z)=f(z)\forall z \in D,\ F'(z) = f(z),则对于任意路径 γ:[a,b]D\gamma:[a,b] \to D,有

γf(z)dz=F(E(γ))F(S(γ))\int_\gamma f(z) \, dz = F(E(\gamma)) - F(S(\gamma))

特别地,若 γ\gamma 为闭路径,则

γf(z)dz=0\int_\gamma f(z) \, dz = 0

证明

γ\gamma 本身为 C1C^1 曲线,则由于

ddtF(γ(t))=F(γ(t))γ(t)=f(γ(t))γ(t)\frac{d}{dt} F(\gamma(t)) = F'(\gamma(t)) \cdot \gamma'(t) = f(\gamma(t)) \cdot \gamma'(t)

所以通过实数上的微积分基本定理,

γf(z)dz=abf(γ(t))γ(t)dt=abddtRe(F(γ(t)))dt+iabddtIm(F(γ(t)))dt=[Re(F(γ(t)))]ab+i[Im(F(γ(t)))]ab=F(E(γ))F(S(γ))\begin{aligned} \int_\gamma f(z) \, dz &= \int_a^b f(\gamma(t)) \gamma'(t) \, dt \\ &= \int_a^b \frac{d}{dt} \mathrm{Re}(F(\gamma(t))) \, dt + i \int_a^b \frac{d}{dt} \mathrm{Im}(F(\gamma(t))) \, dt \\ &= \bigg[\mathrm{Re}(F(\gamma(t)))\bigg]_a^b + i \bigg[\mathrm{Im}(F(\gamma(t)))\bigg]_a^b \\ &= F(E(\gamma)) - F(S(\gamma)) \end{aligned}

对于一般的路径 γ\gamma,将其分割为 nnC1C^1 曲线 γi\gamma_i,则

γf(z)dz=i=1nγif(z)dz=i=1n[F(E(γi))F(S(γi))]=F(E(γ))F(S(γ))\begin{aligned} \int_\gamma f(z) \, dz &= \sum_{i=1}^n \int_{\gamma_i} f(z) \, dz \\ &= \sum_{i=1}^n [F(E(\gamma_i)) - F(S(\gamma_i))] \\ &= F(E(\gamma)) - F(S(\gamma)) \end{aligned}

\square

复变函数的正则性由于多值性等问题,与实变函数不同,需要另外分析
以下是重要示例

示例
对于 z0C,nZz_0 \in \mathbb C,\ n \in \mathbb Z,闭路径 γ\gamma

γ1(zz0)ndz={0,n12πi,n=1\int_\gamma \frac{1}{(z - z_0)^n} \, dz = \begin{cases} 0, & n \neq 1 \\ 2\pi i, & n = 1 \end{cases}

证明

n1n \neq -1 时)
由于

ddz((zz0)n+1n+1)=(zz0)n\frac{d}{dz} \left( \frac{(z - z_0)^{n+1}}{n+1} \right) = (z - z_0)^n

所以可以给出原函数,对于闭路径积分为 00

n=1n = -1 时)
原函数看似是 Log(zz0)\mathrm{Log}(z - z_0)
但是复数的对数函数哪怕是主值也是不正则的,必须要切割掉定义域中的某条射线(通常称为 “分支切割”)才能保证可微性

对于闭合的路径,当 z0z_0 在路径内部时,函数相对于圆心完整的绕行了一圈,必然会发生跳跃,这个跳跃会导致积分不为 00

实际上可以代入路径 γ(t)=z0+reit,t[0,2π]\gamma(t) = z_0 + re^{it},\ t \in [0,2\pi] 计算验证

γ1zz0dz=02π1reitireitdt=02πidt=2πi\int_\gamma \frac{1}{z - z_0} \, dz = \int_0^{2\pi} \frac{1}{re^{it}} \cdot i r e^{it} \, dt = \int_0^{2\pi} i \, dt = 2\pi i

正好是对数函数在绕行一圈后的跳跃值
这并不是巧合,实际上如果将路径改为绕行 mm 圈,则积分值为 2mπi2m\pi i
\square