Sticky Posts

2k words 2 mins.

自用的本科数学课程学习笔记 重心在于对方法原理的解构与证明流程分析 本笔记中规定 子集符号 ⊂\subset⊂ 表示一般子集关系,而真子集用 ⊊\subsetneq⊊ 表示 自然数集 N={1,2,3,…}\mathbb N = \{1, 2, 3, \ldots\}N={1,2,3,…} 不包含 000 使用圆括号表示矩阵,矩阵的转置用 ATA^TAT 表示 默认所有向量均为列向量格式,并且使用 boldsymbol 加粗下的小写字母表示,规定其成分默认用非粗体的下标表示,如 a=(a1,a2,…,an)T\boldsymbol a...
3k words 3 mins.

计算机专业相关内容的学习笔记 # 计算数学 Information Mathematics 参考书籍 榎本 彦衛:情報数学入門,新曜社,1987 Rudolf Lidl, Gunter Pilz: Applied Abstract Algebra, Springer, 1998 # 数值计算 Numerical Algorithms 参考书籍 久保田 光一:工学基礎 数値解析とその応用,数理工学社,2010 E. クライツィグ (田村 義保 訳): 数値解析 (技術者のための高等数学 5), 培風館,2003 Erwin Kreyszig: Advanced Engineering...
85 words 1 mins.

# IT パスポート 公式サイト:https://www3.jitec.ipa.go.jp/JitesCbt/index.html 1 - 企業活動 # EJU 数学 # 数学鉴定 # 统计学鉴定

Post List

19k words 17 mins.

# 实数的构成 通常来说,人们对 “实数” 的概念是一根数轴。在接触到数学分析之前,许多结论看起来是理所当然的,例如 显然 y=xn−ay = x^n - ay=xn−a 与 y=0y = 0y=0 有交点 显然 lim⁡n→∞1n=0\displaystyle\lim_{n \to \infty} \frac{1}{n} = 0n→∞lim​n1​=0 为了真正做到分析,需要彻底了解什么是实数,实数具有什么样的性质 第一个要考虑的问题就是 “数轴上到底有没有洞”。为了分析该问题不妨设数轴上确实有一个洞,那么按照偏序关系可以令较小的集合为 AAA...
2.5k words 2 mins.

# 数と式 平方の公式 (a+b)2=a2+2ab+b2(a+b)^2 = a^2 + 2ab + b^2(a+b)2=a2+2ab+b2 (a−b)2=a2−2ab+b2(a-b)^2 = a^2 - 2ab + b^2(a−b)2=a2−2ab+b2 和と差の積 a2−b2=(a−b)(a+b)a^2 - b^2 = (a-b)(a+b)a2−b2=(a−b)(a+b) 一次式の積 (x+a)(x+b)=x2+(a+b)x+ab(x + a)(x + b) = x^2 + (a+b)x +...
5.1k words 5 mins.

# 二元关系 +,−,×,÷+,-,\times,\div+,−,×,÷ 等运算符号已经被我们熟知,他们都是将左右两侧的对象进行某种操作后返回一个新的结果。这种关系可以实现更抽象化的推广。 定义 令 XXX 为集合,称 X×XX \times XX×X 的子集 RRR 为集合 XXX 上的 二元关系 (Binary Relation)「二元关系」。 对于 x,y∈Xx, y \in Xx,y∈X,称 xxx 与 yyy 之间 存在关系 R (R-related)「R 関係をもつ」,当且仅当 (x,y)∈R(x, y) \in R(x,y)∈R,记作...
10k words 9 mins.

本章节主要讨论线性下的方程 # 二阶线性常微分方程 二阶常微分方程 (Second-Order Ordinary Differential Equation, SODE)「二階常微分方程式」 是指形如 F(x,y,y′,y′′)=0F(x, y, y', y'') = 0 F(x,y,y′,y′′)=0 的常微分方程,其中 yyy 是未知函数,xxx 是自变量,y′y'y′ 和 y′′y''y′′ 分别是 yyy 关于 xxx...
26k words 24 mins.

本节详细分析多项式环的结构性质 以下默认 RRR 为整环 # 多项式除法 现在让我们考虑多项式环上是否可以定义除法 如素元分解章节所说,整环的带余除法需要 Euclidean 整环的性质支持 虽然系数环 RRR 是整环可以保证多项式环 R[x]R[x]R[x] 也是整环 但是 Euclidean 整环的性质并不能直接传递到多项式环上,还需要对系数有更强的要求:域 此时次数函数 deg⁡\degdeg 可以作为 Euclidean 函数 命题 令 RRR 为域,f,g∈R[x]f,g \in R[x]f,g∈R[x], g≠0g \neq 0g=0 则存在唯一的...