Sticky Posts

1.9k words 2 mins.

自用的本科数学课程学习笔记 重心在于对方法原理的解构与证明流程分析 本笔记中规定 子集符号 ⊂\subset⊂ 表示一般子集关系,而真子集用 ⊊\subsetneq⊊ 表示 自然数集 N={1,2,3,…}\mathbb N = \{1, 2, 3, \ldots\}N={1,2,3,…} 不包含 000 使用圆括号表示矩阵,矩阵的转置用 ATA^TAT 表示 默认所有向量均为列向量格式,并且使用 boldsymbol 加粗下的小写字母表示,规定其成分默认用非粗体的下标表示,如 a=(a1,a2,…,an)T\boldsymbol a...
3k words 3 mins.

计算机专业相关内容的学习笔记 # 计算数学 Information Mathematics 参考书籍 榎本 彦衛:情報数学入門,新曜社,1987 Rudolf Lidl, Gunter Pilz: Applied Abstract Algebra, Springer, 1998 # 数值计算 Numerical Algorithms 参考书籍 久保田 光一:工学基礎 数値解析とその応用,数理工学社,2010 E. クライツィグ (田村 義保 訳): 数値解析 (技術者のための高等数学 5), 培風館,2003 Erwin Kreyszig: Advanced Engineering...
85 words 1 mins.

# IT パスポート 公式サイト:https://www3.jitec.ipa.go.jp/JitesCbt/index.html 1 - 企業活動 # EJU 数学 # 数学鉴定 # 统计学鉴定

Post List

28k words 26 mins.

以下令 SSS 为正则曲面 # 测地线 定义 若 SSS 上的 C∞C^\inftyC∞ 曲线 γ:I→S\boldsymbol \gamma : I \to Sγ:I→S 满足 d2γdt2⊥Tγ(t)S, ∀t∈I\frac{d^2 \boldsymbol \gamma}{dt^2} \perp T_{\boldsymbol \gamma(t)}S,\ \forall t \in I \quad dt2d2γ​⊥Tγ(t)​S, ∀t∈I 则称 γ\boldsymbol...
9.5k words 9 mins.

# Riemannian 度规 以下令开集 D⊂R2D \subset \mathbb R^2D⊂R2 取 DDD 上的定点 q=(uv)∈D\boldsymbol q = \binom{u}{v} \in Dq=(vu​)∈D,构造平面上的切空间 TqD=R2T_{\boldsymbol q}D = \mathbb R^2Tq​D=R2 取正交归一标准基底 e1=(10),e2=(01)\boldsymbol e_1 = \binom{1}{0}, \quad \boldsymbol e_2 =...
23k words 21 mins.

# 回转角 令 D⊂R2D \subset \mathbb R^2D⊂R2 为开集 取 DDD 上的 Riemannian 度规 ggg (ξ,η)q=gq(ξ,η),∥ξ∥q=(ξ,ξ)q(\xi, \eta)_{\boldsymbol q} = g_{\boldsymbol q}(\xi, \eta), \quad \|\xi\|_{\boldsymbol q} = \sqrt{(\xi, \xi)_{\boldsymbol...
10k words 9 mins.

微分形简单来说就是在积分 ∫f(x)dx,∬f(x,y)dxdy\int f(x)dx,\quad \iint f(x,y)dxdy ∫f(x)dx,∬f(x,y)dxdy 中,形如 f(x)dx,f(x,y)dxdyf(x)dx, f(x,y)dxdy f(x)dx,f(x,y)dxdy 的部分 微分形具有不同的次数,也可以定义在不同维度的空间中。为了方便理解,我们首先从二维空间的 111 次微分形开始导入 # 1 - 形式 令 U⊂R2U \subset \mathbb R^2U⊂R2 为开集 对于定点 p∈U\boldsymbol p...
8.9k words 8 mins.

本章主要内容为以微分形式为对象的计算 以下计算均建立在开集 UUU 上的 kkk 形式: Ωk(U)\Omega^k(U)Ωk(U) 上 对于 α,β∈Ωk(U)\alpha, \beta \in \Omega^k(U)α,β∈Ωk(U),记 α=∑i1,…,ik=1nfi1⋯ikdxi1∧⋯∧dxikβ=∑j1,…,jk=1ngj1⋯jkdxj1∧⋯∧dxjk\alpha = \sum_{i_1,\dots,i_k=1}^n f_{i_1\cdots i_k} dx_{i_1} \wedge \cdots...