曲率是微分几何研究的中心内容

以下令曲线 c:IR3\boldsymbol c: I \to \mathbb{R}^3 为弧长参数化下的正则曲线

# 平面曲线

平面曲线的切向量 c(s)\boldsymbol c'(s) 由曲线的移动方向唯一确定,但是法向量有两个方向可取

通常来说,固定选择右手系的方向,即切向量逆时针旋转 9090^\circ 的方向为法向量的方向

t(s)=c(s)\boldsymbol t(s) = \boldsymbol c'(s) 为切向量,弧长参数化下可知 t\boldsymbol t 为单位向量

此时 (t,n)(\boldsymbol t, \boldsymbol n) 构成了平面上的一个正交归一基底

并且将 c(s)=1\|\boldsymbol c'(s)\| = 1 等式两边对 ss 求导,得到

ddsc(s)c(s)=0c(s)c(s)c(s)=0\frac{d}{ds} \sqrt{\boldsymbol c'(s) \cdot \boldsymbol c'(s)} = 0 \implies \frac{\boldsymbol c''(s) \cdot \boldsymbol c'(s)}{\|\boldsymbol c'(s)\|} = 0 \quad

因此 c(s)\boldsymbol c''(s)c(s)\boldsymbol c'(s) 正交,说明 c(s)\boldsymbol c''(s) 一定在法向量方向上,即存在标量函数 κ(s)\kappa(s) 使得

c(s)=κ(s)n(s)\boldsymbol c''(s) = \kappa(s) \boldsymbol n(s)

由于 n\boldsymbol n 是单位向量,对两边取模长得到

c(s)=κ(s)\|\boldsymbol c''(s)\| = |\kappa(s)|

定义
对于弧长参数化下的平面曲线 c(s):IR2\boldsymbol c(s): I \to \mathbb R^2,称

κ(s)=c(s)\kappa(s) = \|\boldsymbol c''(s)\|

为平面曲线 c\boldsymbol c 在点 c(s)\boldsymbol c(s) 处的 曲率 (curvature)「曲率」

注意:该定义式给出的曲率一定是非负值,意味着符号不具备含义
与其相对,由

c(s)=κ(s)n(s)\boldsymbol c''(s) = \kappa(s) \boldsymbol n(s)

给出的曲率 κ(s)\kappa(s) 称为 带向曲率,可能取正可能取负也可能为零,符号表示曲线弯曲的方向

  • 曲线为 向法向量 方向弯曲时,带向曲率为正
  • 曲线为 背离法向量 方向弯曲时,带向曲率为负

在曲率不为零时,取其倒数

ρ(s)=1κ(s)\rho(s) = \frac{1}{\kappa(s)} \quad

称为曲线在点 c(s)\boldsymbol c(s) 处的 曲率半径,并称以点

o(s)=c(s)+ρ(s)n(s)\boldsymbol o(s) = \boldsymbol c(s) + \rho(s) \boldsymbol n(s)

为中心,ρ(s)\rho(s) 为半径的圆为曲线在点 c(s)\boldsymbol c(s) 处的 曲率圆

几何上,曲率反应某一点处曲线向法向量方向的弯曲程度,可以理解为在这个方向上拉扯的力大小(加速度大小)


以下推导 非弧长参数化下 的曲率公式,即 c=c(t)\boldsymbol c = \boldsymbol c(t)
由弧长参数定义以及微积分基本定理,得到

s(t)=t0tc(u)dudsdt=c(t)s(t) = \int_{t_0}^t \|\boldsymbol c'(u)| du \implies \frac{ds}{dt} = \|\boldsymbol c'(t)\|

所以将 ss 视作 tt 的函数,利用链式法则,得到

c(s)=dcds(s(t))=dcdt(t)dtds\boldsymbol c'(s) = \frac{d\boldsymbol c}{ds}(s(t)) = \frac{d\boldsymbol c}{dt}(t) \cdot \frac{dt}{ds}

进一步计算可得

c(s)=dds(c(t)dtds)=c(t)(dtds)2+c(t)d2tds2\boldsymbol c''(s) = \frac{d}{ds}\left(\boldsymbol c'(t) \cdot \frac{dt}{ds}\right) = \boldsymbol c''(t) \left(\frac{dt}{ds}\right)^2 + \boldsymbol c'(t) \cdot \frac{d^2 t}{ds^2}

dtds=1c(t)\frac{dt}{ds} = \frac{1}{\|\boldsymbol c'(t)\|} 代入上式,得到

c(s)=c(t)2c(t)(c(t)c(t))c(t)c(t)4=(c(t)c(t))c(t)(c(t)c(t))c(t)c(t)4=c(t)×(c(t)×c(t))c(t)4(向量三重积)\begin{aligned} \boldsymbol c''(s) &= \frac{\|\boldsymbol c'(t)\|^2 \boldsymbol c''(t) - (\boldsymbol c'(t) \cdot \boldsymbol c''(t)) \boldsymbol c'(t)}{\|\boldsymbol c'(t)\|^4} \\ &= \frac{(\boldsymbol c'(t) \cdot \boldsymbol c'(t)) \boldsymbol c''(t) - (\boldsymbol c'(t) \cdot \boldsymbol c''(t)) \boldsymbol c'(t)}{\|\boldsymbol c'(t)\|^4} \\ &= \frac{\boldsymbol c'(t) \times (\boldsymbol c''(t) \times \boldsymbol c'(t))}{\|\boldsymbol c'(t)\|^4} \quad \text{(向量三重积)} \end{aligned}

取模长

κ(t)=c(s(t))=c(t)×(c(t)×c(t))c(t)4=c(t)2c(t)×c(t)2(c(t)(c(t)×c(t)))2c(t)4=c(t)×c(t)c(t)3\begin{aligned} \kappa(t) = \|\boldsymbol c''(s(t))\| &= \frac{\|\boldsymbol c'(t) \times (\boldsymbol c''(t) \times \boldsymbol c'(t))\|}{\|\boldsymbol c'(t)\|^4} \\ &= \frac{\sqrt{\|\boldsymbol c'(t)\|^2 \|\boldsymbol c''(t) \times \boldsymbol c'(t)\|^2 - (\boldsymbol c'(t) \cdot (\boldsymbol c''(t) \times \boldsymbol c'(t)))^2}}{\|\boldsymbol c'(t)\|^4} \\ &= \frac{\|\boldsymbol c'(t) \times \boldsymbol c''(t)\|}{\|\boldsymbol c'(t)\|^3} \end{aligned}

命题
对于一般曲线 c(t):IR2\boldsymbol c(t): I \to \mathbb R^2

κ(t)=c(t)×c(t)c(t)3=det(c(t),c(t))c(t)3\kappa(t) = \frac{\|\boldsymbol c'(t) \times \boldsymbol c''(t)\|}{\|\boldsymbol c'(t)\|^3} = \frac{\det(\boldsymbol c'(t), \boldsymbol c''(t))}{\|\boldsymbol c'(t)\|^3} \quad

# 空间曲线

空间曲线相较于平面曲线,可运动的维度增加了一个,所以仅靠一个曲率无法锁定曲线的弯曲情况(曲率本身是标量函数,只能携带一份信息)

并且从法向量的定义开始,空间曲线并不像平面曲线那样只有两个可取方向,实际上虽然切向量本身还是可以唯一确定,但是与切向量垂直的向量有无数个,构成一整个平面

因此需要特别指定一个法向量方向

由于在曲线的研究中,有以下关系式

c(s)=κ(s)n(s)\boldsymbol c''(s) = \kappa(s) \boldsymbol n(s)

所以考虑借助二阶微分 c(s)\boldsymbol c''(s) 来定义法向量方向,即令法向量

n(s)=c(s)c(s)\boldsymbol n(s) = \frac{\boldsymbol c''(s)}{\|\boldsymbol c''(s)\|} \quad

那么在两个向量都被锁定的情况下,右手系的第三个基底向量可以由向量积唯一确定,即

b(s)=t(s)×n(s)\boldsymbol b(s) = \boldsymbol t(s) \times \boldsymbol n(s)

称为 副法向量挠向量

此时 (t,n,b)(\boldsymbol t, \boldsymbol n, \boldsymbol b) 构成了空间中的一个正交归一基底,并称为 Frenet 标架

沿用平面曲线的定义,空间曲线的曲率仍然定义为

κ(s)=c(s)\kappa(s) = \|\boldsymbol c''(s)\|

如先前所说,空间曲线下,曲率仅可衡量某一平面上(实际上是 t,n\boldsymbol t, \boldsymbol n 所张成的平面)曲线的弯曲情况,对于超出该平面的变化,需要引入第二曲率进行分析,即挠率

挠率刻画的是曲线从局部平面弯出到空间的 “扭转” 程度。这个 “扭转” 体现于法向量的旋转方向
所以定义法向量微分的 b\boldsymbol b 方向分量 nb\boldsymbol n' \cdot \boldsymbol b 为挠率,并且注意

nb=0nb=bn\boldsymbol n \cdot \boldsymbol b = 0 \implies \boldsymbol n' \cdot \boldsymbol b = - \boldsymbol b' \cdot \boldsymbol n

定义
对于空间曲线 c:IR3\boldsymbol c: I \to \mathbb R^3,称

κ(s)=c(s)\kappa(s) = \|\boldsymbol c''(s)\|

为曲线 c\boldsymbol c 在点 c(s)\boldsymbol c(s) 处的 曲率 (curvature)「曲率」,称

τ(s)=b(s)n(s)\tau(s) = -\boldsymbol b'(s) \cdot \boldsymbol n(s)

为曲线 c\boldsymbol c 在点 c(s)\boldsymbol c(s) 处的 挠率 (torsion)「捩率」

  • 曲率 κ\kappa 控制曲线 “弯” 的程度
  • 挠率 τ\tau 控制曲线 “扭” 的速度

以下推导 非弧长参数化下 的挠率公式,即 c=c(t)\boldsymbol c = \boldsymbol c(t)
曲率与平面曲线一致,即

κ(t)=c(t)×c(t)c(t)3\kappa(t) = \frac{\|\boldsymbol c'(t) \times \boldsymbol c''(t)\|}{\|\boldsymbol c'(t)\|^3}

对于挠率,需先计算 n,b,n\boldsymbol n, \boldsymbol b, \boldsymbol n'
首先由曲率推导过程中可知

c(s)=c(t)c(t),c(s)=c(t)×(c(t)×c(t))c(t)4\boldsymbol c'(s) = \frac{\boldsymbol c'(t)}{\|\boldsymbol c'(t)\|},\quad \boldsymbol c''(s) = \frac{\boldsymbol c'(t) \times (\boldsymbol c''(t) \times \boldsymbol c'(t))}{\|\boldsymbol c'(t)\|^4}

所以

n(s)=c(s)c(s)=c(t)×(c(t)×c(t))c(t)×(c(t)×c(t))\boldsymbol n(s) = \frac{\boldsymbol c''(s)}{\|\boldsymbol c''(s)\|} = \frac{\boldsymbol c'(t) \times (\boldsymbol c''(t) \times \boldsymbol c'(t))}{\|\boldsymbol c'(t) \times (\boldsymbol c''(t) \times \boldsymbol c'(t))\|}

b(s)=c(s)×n(s)=c(t)×{c(t)×(c(t)×c(t))}c(t)2c(t)×(c(t)×c(t))\boldsymbol b(s) = \boldsymbol c'(s) \times \boldsymbol n(s) = \frac{\boldsymbol c'(t) \times \{\boldsymbol c'(t) \times (\boldsymbol c''(t) \times \boldsymbol c'(t))\}}{\|\boldsymbol c'(t)\|^2 \cdot \|\boldsymbol c'(t) \times (\boldsymbol c''(t) \times \boldsymbol c'(t))\|}

n(s)=dndt(t)dtds=ddtNN1c(t)(N:=c(t)×(c(t)×c(t)))=N2N(NN)NN3c(t)=N×(N×N)N3c(t)\begin{aligned} \boldsymbol n'(s) &= \frac{d\boldsymbol n}{dt}(t) \cdot \frac{dt}{ds} \\ &= \frac{d}{dt} \frac{N}{\|N\|} \cdot \frac{1}{\|\boldsymbol c'(t)\|} \quad (N := \boldsymbol c'(t) \times (\boldsymbol c''(t) \times \boldsymbol c'(t))) \\ &= \frac{\|N\|^2 \cdot N' - (N \cdot N') \cdot N}{\|N\|^3 \cdot \|\boldsymbol c'(t)\|} \\ &= \frac{N \times (N' \times N)}{\|N\|^3 \cdot \|\boldsymbol c'(t)\|} \end{aligned}

因此

τ(t)=n(s(t))b(s(t))=[N×(N×N)][c(t)×{c(t)×(c(t)×c(t))}]N4c(t)3=1N4c(t)2{N×(N×N)}(c(t)×N)=(Nc(t)){N×(N×N)}{c(t)(N×N)}N2N4c(t)2=c(t)(N×N)N2c(t)2(因为Nc(t)=0=N(c(t)×N)c(t)4c(t)×c(t)2\begin{aligned} \tau(t) &= \boldsymbol n'(s(t)) \cdot \boldsymbol b(s(t)) \\ &= \frac{[N \times (N' \times N)] \cdot [\boldsymbol c'(t) \times \{\boldsymbol c'(t) \times (\boldsymbol c''(t) \times \boldsymbol c'(t))\}]}{\|N\|^4 \cdot \|\boldsymbol c'(t)\|^3} \\ &= \frac{1}{\|N\|^4 \cdot \|\boldsymbol c'(t)\|^2} \cdot \{N \times (N' \times N)\} \cdot (\boldsymbol c'(t) \times N) \\ &= \frac{(N \cdot \boldsymbol c'(t)) \{N \times (N' \times N)\} - \{\boldsymbol c'(t) \cdot(N' \times N)\} \cdot N^2}{\|N\|^4 \cdot \|\boldsymbol c'(t)\|^2} \\ &= \frac{\boldsymbol c'(t) \cdot (N' \times N)}{\|N\|^2 \cdot \|\boldsymbol c'(t)\|^2} \quad \text{(因为 $N \cdot \boldsymbol c'(t) = 0$)} \\ &= \frac{N' \cdot (\boldsymbol c'(t) \times N)}{\|\boldsymbol c'(t)\|^4 \cdot \|\boldsymbol c''(t) \times \boldsymbol c'(t)\|^2} \\ \end{aligned}

分子部分

N=c×(c×c)+c×(c×c+c×c0)=(c(t)c(t)+c(t)c(t))第一分量c(t)+(c(t)c(t))第二分量c(t)+(c(t)c(t))第三分量c(t)c(t)×N=c(t)×[c(t)×(c(t)×c(t))]=c(t)×{(c(t)c(t))c(t)(c(t)c(t))c(t)}=(c(t)c(t))分量(c(t)×c(t))\begin{aligned} N' &= \boldsymbol c'' \times (\boldsymbol c'' \times \boldsymbol c') + \boldsymbol c' \times (\boldsymbol c''' \times \boldsymbol c' + \underbrace{\boldsymbol c'' \times \boldsymbol c''}_{0}) \\ &= \underbrace{-(\boldsymbol c''(t) \cdot \boldsymbol c''(t) + \boldsymbol c'(t) \cdot \boldsymbol c'''(t))}_{\text{第一分量}} \boldsymbol c'(t) + \underbrace{(\boldsymbol c''(t) \cdot \boldsymbol c'(t))}_{\text{第二分量}} \boldsymbol c''(t) + \underbrace{(\boldsymbol c'(t) \cdot \boldsymbol c'(t))}_{\text{第三分量}} \boldsymbol c'''(t) \\ \boldsymbol c'(t) \times N &= \boldsymbol c'(t) \times [\boldsymbol c'(t) \times (\boldsymbol c''(t) \times \boldsymbol c'(t))] \\ &= \boldsymbol c'(t) \times \{(\boldsymbol c'(t) \cdot \boldsymbol c'(t)) \boldsymbol c''(t) - (\boldsymbol c'(t) \cdot \boldsymbol c''(t)) \boldsymbol c'(t)\} \\ &= \underbrace{(\boldsymbol c'(t) \cdot \boldsymbol c'(t))}_{\text{分量}} (\boldsymbol c'(t) \times \boldsymbol c''(t)) \end{aligned}

所以二者做内积时,仅 c(t)\boldsymbol c'''(t) 项有贡献,由标量三重积得到

N(c(t)×N)=c(t)4c(t)(c(t)×c(t))=c(t)4det(c(t),c(t),c(t))N' \cdot (\boldsymbol c'(t) \times N) = \|\boldsymbol c'(t)\|^4 \boldsymbol c'''(t) \cdot (\boldsymbol c'(t) \times \boldsymbol c''(t)) = \|\boldsymbol c'(t)\|^4 \det(\boldsymbol c'(t), \boldsymbol c''(t), \boldsymbol c'''(t))

带回得到

τ(t)=det(c(t),c(t),c(t))c(t)×c(t)2\tau(t) = \frac{\det(\boldsymbol c'(t), \boldsymbol c''(t), \boldsymbol c'''(t))}{\|\boldsymbol c'(t) \times \boldsymbol c''(t)\|^2}

命题
对于一般曲线 c(t):IR3\boldsymbol c(t): I \to \mathbb R^3

κ(t)=c(t)×c(t)c(t)3,τ(t)=det(c(t),c(t),c(t))c(t)×c(t)2\kappa(t) = \frac{\|\boldsymbol c'(t) \times \boldsymbol c''(t)\|}{\|\boldsymbol c'(t)\|^3}, \quad \tau(t) = \frac{\det(\boldsymbol c'(t), \boldsymbol c''(t), \boldsymbol c'''(t))}{\|\boldsymbol c'(t) \times \boldsymbol c''(t)\|^2}