以下令 SS 为正则曲面

# 测地线

定义
SS 上的 CC^\infty 曲线 γ:IS\boldsymbol \gamma : I \to S 满足

d2γdt2Tγ(t)S,tI\frac{d^2 \boldsymbol \gamma}{dt^2} \perp T_{\boldsymbol \gamma(t)}S,\ \forall t \in I \quad

则称 γ\boldsymbol \gammaSS 上的 测地线 (Geodesic)「測地線」

命题
γ:IR3\boldsymbol \gamma:I \to \mathbb R^3SS 上的测地线,则有

  1. γ(t)=常数\|\boldsymbol \gamma'(t)\| = \text{常数} \quad
  2. γ~(s):=γ(sλ)\boldsymbol{\tilde \gamma(s)} := \boldsymbol \gamma (\frac{s}{\lambda}) 为弧长参数化的测地线,其中 λ=γ(t0)0\lambda = \|\boldsymbol \gamma'(t_0)\| \neq 0 \quad
证明

(1) 由于 γTγ(t)S\boldsymbol \gamma' \in T_{\boldsymbol \gamma(t)}S,所以

0=γγ=12ddt(γγ)=ddtγ(t)20 = \boldsymbol \gamma'' \cdot \boldsymbol \gamma' = \frac{1}{2} \frac{d}{dt} \left(\boldsymbol \gamma' \cdot \boldsymbol \gamma'\right) = \frac{d}{dt} \|\boldsymbol \gamma'(t)\|^2

(2)

d2γ~ds2(s)=d2γds2(sλ)=1λ2d2γdt2(sλ)Tγ(sλ)S=Tγ~(s)S\frac{d^2 \boldsymbol{\tilde \gamma}}{ds^2}(s) = \frac{d^2 \boldsymbol \gamma}{ds^2}(\frac{s}{\lambda}) = \frac{1}{\lambda^2} \frac{d^2 \boldsymbol \gamma}{dt^2}(\frac{s}{\lambda}) \perp T_{\boldsymbol \gamma(\frac{s}{\lambda})}S = T_{\boldsymbol{\tilde \gamma}(s)}S

示例
对于平面 SR3S \subset \mathbb R^3
取空间内任意点 vR3\boldsymbol v \in \mathbb R^3 和平面上点 pS\boldsymbol p \in S
γ(t)=p+tv\boldsymbol \gamma(t) = \boldsymbol p + t\boldsymbol vSS 上的测地线

证明

显而易见 γ=0Tγ(t)S\boldsymbol \gamma'' = 0 \perp T_{\boldsymbol \gamma(t)}S

示例
取球面 S=S2(r)R3S = S^2(r) \subset \mathbb R^3,则

γ(t)=(rcostrsint0),tR\boldsymbol \gamma(t) = \begin{pmatrix} r \cos t \\ r \sin t \\ 0 \end{pmatrix}, \quad t \in \mathbb R

SS 上的测地线(赤道线)

证明

计算可得

γ(t)=(rcostrsint0)=1rγ(t)\boldsymbol \gamma''(t) = \begin{pmatrix} -r \cos t \\ -r \sin t \\ 0 \end{pmatrix} = -\frac{1}{r} \boldsymbol \gamma(t)

n(γ(t))=(costsint0)\boldsymbol n(\boldsymbol \gamma(t)) = \begin{pmatrix} \cos t \\ \sin t \\ 0 \end{pmatrix}

平行,所以 γ(t)Tγ(t)S\boldsymbol \gamma''(t) \perp T_{\boldsymbol \gamma(t)}S

# 参数化下的测地线推导

SS 的局部参数化 σ:DR3\boldsymbol \sigma: D \to \mathbb R^3,以下令 (u1,u2)=(u,v)(u^1,u^2) = (u,v),通过将坐标轴改写为编号形式

  • σ1=σu\boldsymbol \sigma_1 = \boldsymbol \sigma_u
  • σ2=σv\boldsymbol \sigma_2 = \boldsymbol \sigma_v
  • σ11=σuu\boldsymbol \sigma_{11} = \boldsymbol \sigma_{uu} \quad
  • σ12=σuv\boldsymbol \sigma_{12} = \boldsymbol \sigma_{uv} \quad
  • σ22=σvv\boldsymbol \sigma_{22} = \boldsymbol \sigma_{vv} \quad

取 Riemannian 度规 gij=σiσjg_{ij} = \boldsymbol \sigma_i \cdot \boldsymbol \sigma_j,和外度规 hij=σijn,i,j=1,2h_{ij} = \boldsymbol \sigma_{ij} \cdot \boldsymbol n,\quad i,j = 1,2(实为第一第二基本形)

(gij)=(EFFG),(hij)=(LMNG)(g_{ij}) = \begin{pmatrix} E & F \\ F & G \end{pmatrix},\quad (h_{ij}) = \begin{pmatrix} L & M \\ N & G \end{pmatrix}

注意 gij=gjig_{ij} = g_{ji}hij=hjih_{ij} = h_{ji} \quad

逆矩阵

(gij)=(gij)1=1EGF2(GFFE)(g^{ij}) = (g_{ij})^{-1} = \frac{1}{EG - F^2} \begin{pmatrix} G & -F \\ -F & E \end{pmatrix}

(i,j)(i,j) 元素记为 gijg^{ij} \quad

此时 σ1,σ2,n\boldsymbol \sigma_1,\boldsymbol \sigma_2,\boldsymbol n 构成 R3\mathbb R^3 的一组基底

所以可以将 σjk\boldsymbol \sigma_{jk} 展开为线性组合

σjk=Γjk1σ1+Γjk2σ2+Γjk3n,j,k=1,2\boldsymbol \sigma_{jk} = \Gamma_{jk}^1 \boldsymbol \sigma_1 + \Gamma_{jk}^2 \boldsymbol \sigma_2 + \Gamma_{jk}^3 \boldsymbol n,\quad j,k = 1,2

由于

Γjk3=σjkn=hjk\Gamma_{jk}^3 = \boldsymbol \sigma_{jk} \cdot \boldsymbol n = h_{jk}

所以改写为

σjk=Γjk1σ1+Γjk2σ2+hjkn,j,k=1,2\boldsymbol \sigma_{jk} = \Gamma_{jk}^1 \boldsymbol \sigma_1 + \Gamma_{jk}^2 \boldsymbol \sigma_2 + h_{jk} \boldsymbol n,\quad j,k = 1,2

其中 Γjki\Gamma_{jk}^i 称为 Christoffel 符号 (Christoffel Symbol)「クリストッフェル記号」

注意继承于 σjk=σkj\boldsymbol \sigma_{jk} = \boldsymbol \sigma_{kj},所以 Γjki=Γkji\Gamma_{jk}^i = \Gamma_{kj}^i

那么对于满足 γ(t)σ(D)\boldsymbol \gamma(t) \in \boldsymbol \sigma(D)tRt \in \mathbb R,将 γ\boldsymbol \gamma 用参数化表示为

γ(t)=σ(u1(t),u2(t))\boldsymbol \gamma(t) = \boldsymbol \sigma(u^1(t),u^2(t))

dγdt(t)=j=12σj(u1(t),u2(t))dujdt(t)\frac{d \boldsymbol \gamma}{dt}(t) = \sum_{j=1}^2 \boldsymbol \sigma_j(u^1(t),u^2(t)) \frac{du^j}{dt}(t)

d2γdt2(t)=j,k=12σjk(u1(t),u2(t))dujdt(t)dukdt(t)+j=12σj(u1(t),u2(t))d2ujdt2(t)=i,j,k=12Γjkiσidujdtdukdt+j=12σjd2ujdt2+(j,k=12hjkdujdtdukdt)n=i=12(j,k=12Γjki(u1(t),u2(t))dujdt(t)dukdt(t)+d2uidt2(t))切向分量σi(u1(t),u2(t))+(j,k=12hjk(u1(t),u2(t))dujdt(t)dukdt(t))法向分量n(u1(t),u2(t))\begin{aligned} \frac{d^2 \boldsymbol \gamma}{dt^2}(t) &= \sum_{j,k=1}^2 \boldsymbol \sigma_{jk}(u^1(t),u^2(t)) \frac{du^j}{dt}(t) \frac{du^k}{dt}(t) + \sum_{j=1}^2 \boldsymbol \sigma_j(u^1(t),u^2(t)) \frac{d^2 u^j}{dt^2}(t) \\ &= \sum_{i,j,k=1}^2 \Gamma_{jk}^i \boldsymbol \sigma_i \frac{du^j}{dt} \frac{du^k}{dt} + \sum_{j=1}^2 \boldsymbol \sigma_j \frac{d^2 u^j}{dt^2} + \left( \sum_{j,k=1}^2 h_{jk} \frac{du^j}{dt} \frac{du^k}{dt} \right) \boldsymbol n \\ &= \underbrace{ \sum_{i=1}^2 \left( \sum_{j,k=1}^2 \Gamma_{jk}^i(u^1(t),u^2(t)) \frac{du^j}{dt}(t) \frac{du^k}{dt}(t) + \frac{d^2 u^i}{dt^2}(t) \right) }_{\text{切向分量}} \boldsymbol \sigma_i(u^1(t),u^2(t)) \\ &+ \underbrace{ \left( \sum_{j,k=1}^2 h_{jk}(u^1(t),u^2(t)) \frac{du^j}{dt}(t) \frac{du^k}{dt}(t) \right) }_{\text{法向分量}} \boldsymbol n(u^1(t),u^2(t) ) \end{aligned}

由于 σiTγ(t)S,nTγ(t)S\boldsymbol \sigma_i \perp T_{\boldsymbol \gamma(t)}S, \quad \boldsymbol n \perp T_{\boldsymbol \gamma(t)}S
所以 γ\boldsymbol \gamma 为测地线的充要条件为

d2γdt2Tγ(t)Sd2uidt2+j,k=12Γjkidujdtdukdt=0关于ui(t)2阶常微分方程,i=1,2\frac{d^2 \boldsymbol \gamma}{dt^2} \perp T_{\boldsymbol \gamma(t)}S \iff \underbrace{ \frac{d^2 u^i}{dt^2} + \sum_{j,k=1}^2 \Gamma_{jk}^i \frac{du^j}{dt} \frac{du^k}{dt} = 0 }_{\text{关于 $u^i(t)$ 的 $2$ 阶常微分方程}},\quad i = 1,2

关于常微分方程组的解的存在唯一性可由常微分方程基本定理保证

命题
对于任意 pS\boldsymbol p \in SvTpS\boldsymbol v \in T_{\boldsymbol p}S
取足够小的 δ>0\delta \gt 0,则存在唯一的测地线 γ:(δ,δ)S\boldsymbol \gamma:(-\delta,\delta) \to S,使得

γ(0)=p,γ(0)=v\boldsymbol \gamma(0) = \boldsymbol p,\quad \boldsymbol \gamma'(0) = \boldsymbol v

命题
Christoffel 符号可由下式计算得到

Γjki=12m=12gim(gmkuj+gmjukgjkum)\Gamma_{jk}^i = \frac{1}{2} \sum_{m=1}^2 g^{im} \left( \frac{\partial g_{mk}}{\partial u^j} + \frac{\partial g_{mj}}{\partial u^k} - \frac{\partial g_{jk}}{\partial u^m} \right)

证明

gij=σiσjg_{ij} = \boldsymbol \sigma_i \cdot \boldsymbol \sigma_j 可得

gjkul=σjlσk+σjσkl\frac{\partial g_{jk}}{\partial u^l} = \boldsymbol \sigma_{jl} \cdot \boldsymbol \sigma_k + \boldsymbol \sigma_j \cdot \boldsymbol \sigma_{kl}

σij\boldsymbol \sigma_{ij} 展开代入

gjkul=m=12Γjlmgmk+m=12Γklmgmj\frac{\partial g_{jk}}{\partial u^l} = \sum_{m=1}^2 \Gamma_{jl}^m g_{mk} + \sum_{m=1}^2 \Gamma_{kl}^m g_{mj}

交换 j,k,lj,k,l 的位置,得到三个式子

{gkluj=i=12Γkjigil+i=12Γljigikgkluj=i=12Γlkigij+i=12Γjkigilgkjul=i=12Γkjigil+i=12Γjligik\begin{cases} \frac{\partial g_{kl}}{\partial u^j} = \textcolor{yellow}{\underline{\textcolor{lightgrey}{\sum_{i=1}^2 \Gamma_{kj}^i g_{il}}}} + \textcolor{pink}{\underline{\textcolor{lightgrey}{\sum_{i=1}^2 \Gamma_{lj}^i g_{ik}}}} \\ \frac{\partial g_{kl}}{\partial u^j} = \textcolor{pink}{\underline{\textcolor{lightgrey}{\sum_{i=1}^2 \Gamma_{lk}^i g_{ij}}}} + \textcolor{cyan}{\underline{\textcolor{lightgrey}{\sum_{i=1}^2 \Gamma_{jk}^i g_{il}}}} \\ \frac{\partial g_{kj}}{\partial u^l} = \textcolor{yellow}{\underline{\textcolor{lightgrey}{\sum_{i=1}^2 \Gamma_{kj}^i g_{il}}}} + \textcolor{cyan}{\underline{\textcolor{lightgrey}{\sum_{i=1}^2 \Gamma_{jl}^i g_{ik}}}} \end{cases}

相加减后可得

gmkuj+gmjukgjkum=2i=12Γjkigim\frac{\partial g_{mk}}{\partial u^j} + \frac{\partial g_{mj}}{\partial u^k} - \frac{\partial g_{jk}}{\partial u^m} = 2 \sum_{i=1}^2 \Gamma_{jk}^i g_{im}

两边同时乘以 gimg^{im} 并求和,得到所需结果

m=12gim(gmkuj+gmjukgjkum)=2i=12Γjki\sum_{m=1}^2 g^{im} \left( \frac{\partial g_{mk}}{\partial u^j} + \frac{\partial g_{mj}}{\partial u^k} - \frac{\partial g_{jk}}{\partial u^m} \right) = 2 \sum_{i=1}^2 \Gamma_{jk}^i

将此处算出的 Christoffel 符号代入

σjk=i=12Γjkiσi+hjkn,j,k=1,2\boldsymbol \sigma_{jk} = \sum_{i=1}^2 \Gamma_{jk}^i \boldsymbol \sigma_i + h_{jk} \boldsymbol n,\quad j,k = 1,2

所得公式称为 Gauss 公式 (Gauss Formula)「ガウスの公式」

# 协变微分

γ:IS\boldsymbol \gamma: I \to S 为正则曲面 SS 上的曲线

定义
CC^\infty 映射 X:IR3\boldsymbol X: I \to R^3 满足

X(t)Tγ(t)S,tI\boldsymbol X(t) \in T_{\boldsymbol \gamma(t)}S,\ \forall t \in I

则称 X\boldsymbol XSS沿曲线 γ\boldsymbol \gamma 一个 切向量场 (tangent vector field)「接ベクトル場」

示例
由于 γ(t)Tγ(t)S\boldsymbol \gamma'(t) \in T_{\boldsymbol \gamma(t)}S,所以 γ\boldsymbol \gamma' 为沿曲线 γ\boldsymbol \gamma 的一个向量场

对于任意点 pS\boldsymbol p \in SvR3\boldsymbol v \in \mathbb R^3,可以将 v\boldsymbol v 分解为

v=vtan+vnor,vtanTpS,vnorTpS\boldsymbol v = \boldsymbol v_{\text{tan}} + \boldsymbol v_{\text{nor}},\quad \boldsymbol v_{\text{tan}} \in T_{\boldsymbol p}S,\ \boldsymbol v_{\text{nor}} \perp T_{\boldsymbol p}S

其中

vnor=(vn)n\boldsymbol v_{\text{nor}} = (\boldsymbol v \cdot \boldsymbol n) \boldsymbol n

vtan=v(vn)n\boldsymbol v_{\text{tan}} = \boldsymbol v - (\boldsymbol v \cdot \boldsymbol n) \boldsymbol n

定义
对于沿曲线 γ\boldsymbol \gamma 的向量场 X\boldsymbol X,称

DXdt(t)=(dXdt(t))tan=dXdt(t)(dXdt(t)n(γ(t)))n(γ(t))\frac{D\boldsymbol X}{dt}(t) = \left(\frac{d\boldsymbol X}{dt}(t)\right)_{\text{tan}} = \frac{d\boldsymbol X}{dt}(t) - \left(\frac{d\boldsymbol X}{dt}(t) \cdot \boldsymbol n(\boldsymbol \gamma(t))\right) \boldsymbol n(\boldsymbol \gamma(t))

为沿曲线 γ\boldsymbol \gamma 的向量场 X\boldsymbol X协变微分 (covariant derivative)「共変微分」

此时

X沿曲线γ平行DXdt(t)=0,tIX \text{ 沿曲线 } \boldsymbol \gamma \text{ 平行 } \iff \frac{D\boldsymbol X}{dt}(t) = \boldsymbol 0,\ \forall t \in I

示例
由于

dγdt(t)=γ(t)Tγ(t)S\frac{d\boldsymbol \gamma'}{dt}(t) = \boldsymbol \gamma''(t) \perp T_{\boldsymbol \gamma(t)}S

所以

γS上的测地线Dγdt(t)=0,tIγ沿曲线γ平行\boldsymbol \gamma \text{ 为 } S \text{ 上的测地线 } \iff \frac{D\boldsymbol \gamma'}{dt}(t) = \boldsymbol 0,\ \forall t \in I \iff \boldsymbol \gamma \text{ 沿曲线 } \boldsymbol \gamma \text{ 平行 }

示例
取球面 S=S2(r)R3S = S^2(r) \subset \mathbb R^3,和曲线 γ(t)=(rcostrsint0)\boldsymbol \gamma(t) = \begin{pmatrix} r \cos t \\ r \sin t \\ 0 \end{pmatrix}
任取 CC^\infty 映射 f:RRf: \mathbb R \to \mathbb R,则向量场

X(t)=γ+(00f(t))=(rsintrcostf(t))\boldsymbol X(t) = \boldsymbol \gamma' + \begin{pmatrix} 0 \\ 0 \\ f(t) \end{pmatrix} = \begin{pmatrix} -r \sin t \\ r \cos t \\ f(t) \end{pmatrix}

沿曲线 γ\boldsymbol \gamma 平行

证明

此时

X(t)TγS={(ξηζ)|ξcost+ηsint=0}\boldsymbol X(t) \in T_{\boldsymbol \gamma}S = \left\{\begin{pmatrix} \xi \\ \eta \\ \zeta \end{pmatrix} \middle| \xi \cos t + \eta \sin t = 0\right\}

所以 X\boldsymbol X 为沿曲线 γ\boldsymbol \gamma 的切向量场,由于

DXdt(t)=(00f(t))\frac{D\boldsymbol X}{dt}(t) = \begin{pmatrix} 0 \\ 0 \\ f'(t) \end{pmatrix}

得到

X沿曲线γ平行f(t)为常数\boldsymbol X \text{ 沿曲线 } \boldsymbol \gamma \text{ 平行 } \iff f(t) \text{ 为常数}

# 测地曲率

以下令 (S,n)(S, \boldsymbol n) 为正则曲面 SS 的定向
曲线 γ(s)\boldsymbol \gamma(s) 为弧长参数化的曲线

定义

κg(s)=γ(s)tan\boldsymbol \kappa_g(s) = \boldsymbol \gamma''(s)_{\text{tan}}

为曲线 γ\boldsymbol \gamma 在定向 (S,n)(S, \boldsymbol n) 下的 测地曲率向量 (geodesic curvature vector)「測地的曲率ベクトル」

κn(s)=γ(s)nor\boldsymbol \kappa_n(s) = \boldsymbol \gamma''(s)_{\text{nor}}

为曲线 γ\boldsymbol \gamma 在定向 (S,n)(S, \boldsymbol n) 下的 法曲率向量 (normal curvature vector)「法曲率ベクトル」

该两向量在各自管控的空间上的模长决定曲面在该方向上的弯曲程度,可以自然得到曲率
仅注意:tan 方向和 nor 方向是正交的,二者维度不一致

v=n(γ)×γ\boldsymbol v = \boldsymbol n(\boldsymbol \gamma) \times \boldsymbol \gamma',则唯一存在 标量函数 κg(s)R\kappa_g(s) \in \mathbb R,使得

κg(s)=κg(s)v(s)\boldsymbol \kappa_g(s) = \kappa_g(s) \boldsymbol v(s)

此时称 κg(s)\kappa_g(s) 为曲线 γ\boldsymbol \gamma 在定向 (S,n)(S, \boldsymbol n) 下的 测地曲率 (geodesic curvature)「測地的曲率」

由于法曲率向量是法向量方向的分量,所以也唯一存在 标量函数 κn(s)R\kappa_n(s) \in \mathbb R,使得

κn(s)=κn(s)n(γ(s))\boldsymbol \kappa_n(s) = \kappa_n(s) \boldsymbol n(\boldsymbol \gamma(s))

κn(s)\kappa_n(s) 为曲线 γ\boldsymbol \gamma 在定向 (S,n)(S, \boldsymbol n) 下的 法曲率 (normal curvature)「法曲率」

简要推导如下
(γ,v,n(γ))(\boldsymbol \gamma', \boldsymbol v, \boldsymbol n(\boldsymbol \gamma)) 构成 R3\mathbb R^3 的右手系正交基

κg(s)Tγ(s)Sκg(s)n(γ(s))=0\boldsymbol \kappa_g(s) \in T_{\boldsymbol \gamma(s)}S \implies \boldsymbol \kappa_g(s) \cdot \boldsymbol n(\boldsymbol \gamma(s)) = 0

γ(s)=1γ(s)γ(s)=0\|\boldsymbol \gamma'(s)\| = 1 \implies \boldsymbol \gamma''(s) \cdot \boldsymbol \gamma'(s) = 0

κg(s)γ(s)=(γ(s)κn(s))γ(s)=γ(s)γ(s)κn(s)n(γ(s))γ(s)0=0\boldsymbol \kappa_g(s) \cdot \boldsymbol \gamma'(s) = (\boldsymbol \gamma''(s) - \boldsymbol \kappa_n(s)) \cdot \boldsymbol \gamma'(s) = \boldsymbol \gamma''(s) \cdot \boldsymbol \gamma'(s) - \kappa_n(s) \underbrace{\boldsymbol n(\boldsymbol \gamma(s)) \cdot \boldsymbol \gamma'(s)}_{0} = 0

所以

κg(s)=(κg(s)γ(s))第一分量=0γ(s)+(κg(s)v(s))第二分量v(s)+(κg(s)n(γ(s)))第三分量=0n(γ(s))=(κg(s)v(s))v(s)\boldsymbol \kappa_g(s) = \underbrace{(\boldsymbol \kappa_g(s) \cdot \boldsymbol \gamma'(s))}_{\text{第一分量}=0} \boldsymbol \gamma'(s) + \underbrace{(\boldsymbol \kappa_g(s) \cdot \boldsymbol v(s))}_{\text{第二分量}} \boldsymbol v(s) + \underbrace{(\boldsymbol \kappa_g(s) \cdot \boldsymbol n(\boldsymbol \gamma(s)))}_{\text{第三分量}=0} \boldsymbol n(\boldsymbol \gamma(s)) = (\boldsymbol \kappa_g(s) \cdot \boldsymbol v(s)) \boldsymbol v(s)

所以存在唯一标量函数 κg(s)\kappa_g(s),使得

κg(s)=κg(s)v(s)\boldsymbol \kappa_g(s) = \kappa_g(s) \boldsymbol v(s)


若曲线非弧长参数化,即对于 γ(t)\boldsymbol \gamma(t)
注意到

s=t0tγ(τ)dτdsdt=γ(t)s = \int_{t_0}^t \|\boldsymbol \gamma'(\tau)\| d\tau \implies \frac{ds}{dt} = \|\boldsymbol \gamma'(t)\|

d2γds2(s)=1dsdtddt(1dsdtdγdt(t))=1γ(t)ddt(1γ(t)γ(t))=γ(t)γ(t)2γ(t)γ(t)4(γ(t)γ(t))\frac{d^2 \boldsymbol \gamma}{ds^2}(s) = \frac{1}{\frac{ds}{dt}} \frac{d}{dt} \left(\frac{1}{\frac{ds}{dt}} \frac{d\boldsymbol \gamma}{dt}(t)\right) = \frac{1}{\|\boldsymbol \gamma'(t)\|} \frac{d}{dt} \left(\frac{1}{\|\boldsymbol \gamma'(t)\|} \boldsymbol \gamma'(t)\right) = \frac{\boldsymbol \gamma''(t)}{\|\boldsymbol \gamma'(t)\|^2} - \frac{\boldsymbol \gamma'(t)}{\|\boldsymbol \gamma'(t)\|^4} \left(\boldsymbol \gamma'(t) \cdot \boldsymbol \gamma''(t)\right)

v(t)=n(γ(t))×γ(t)=1γ(t)n(γ(t))×γ(t)\boldsymbol v(t) = \boldsymbol n(\boldsymbol \gamma(t)) \times \boldsymbol \gamma'(t) = \frac{1}{\|\boldsymbol \gamma'(t)|} \boldsymbol n(\boldsymbol \gamma(t)) \times \boldsymbol \gamma'(t)

则曲率

κg=κgv=(d2γds2κnn平行)v=d2γds2v=1γ(t)2d2γds2(n×γ)标量三重积=1γ(t)det(d2γds2,n,γ)=1γ(t)3det(γ,γ,n)\begin{aligned} \kappa_g &= \boldsymbol \kappa_g \cdot \boldsymbol v \\ &= \left( \frac{d^2 \boldsymbol \gamma}{ds^2} - \underbrace{\boldsymbol \kappa_n}_{\text{与 } \boldsymbol n \text{ 平行}} \right) \cdot \boldsymbol v \\ &= \frac{d^2 \boldsymbol \gamma}{ds^2} \cdot \boldsymbol v \\ &= \frac{1}{\|\boldsymbol \gamma'(t)\|^2} \underbrace{\frac{d^2 \boldsymbol \gamma}{ds^2} \cdot (\boldsymbol n \times \boldsymbol \gamma')}_{\text{标量三重积}} \\ &= \frac{1}{\|\boldsymbol \gamma'(t)\|} \det(\frac{d^2 \boldsymbol \gamma}{ds^2}, \boldsymbol n, \boldsymbol \gamma') \\ &= \frac{1}{\|\boldsymbol \gamma'(t)\|^3} \det(\boldsymbol \gamma', \boldsymbol \gamma'', \boldsymbol n) \end{aligned}

即得结论,对于一般的曲线 γ(t)\boldsymbol \gamma(t),其测地曲率为

κg(t)=1γ(t)3det(γ(t),γ(t),n(γ(t)))\kappa_g(t) = \frac{1}{\|\boldsymbol \gamma'(t)\|^3} \det(\boldsymbol \gamma'(t), \boldsymbol \gamma''(t), \boldsymbol n(\boldsymbol \gamma(t)))

命题
以下等价

  • 曲线 γ\boldsymbol \gamma 为测地线
  • dγdt(t)\|\frac{d\boldsymbol \gamma}{dt}(t)\| 恒为常数,且 κg(t)=0\kappa_g(t) = 0tI\forall t \in I
证明

(1) \implies (2)

0=γ(t)γ(t)=12ddt(γ(t)γ(t))=ddtγ(t)2γ(t)恒为常数0 = \boldsymbol \gamma''(t) \cdot \boldsymbol \gamma'(t) = \frac{1}{2} \frac{d}{dt} (\boldsymbol \gamma'(t) \cdot \boldsymbol \gamma'(t)) = \frac{d}{dt} \|\boldsymbol \gamma'(t)\|^2 \implies \|\boldsymbol \gamma'(t)\| \text{ 恒为常数}

另一边

γ(t)Tγ(t)Sγ(t)=kn(γ(t)),kRκg(t)=0\boldsymbol \gamma''(t) \perp T_{\boldsymbol \gamma(t)}S \implies \boldsymbol \gamma''(t) = k \cdot \boldsymbol n(\boldsymbol \gamma(t)) ,\ k \in \mathbb R \implies \kappa_g(t) = 0

(2) \implies (1)
由于 det(γ(t),γ(t),n(γ(t)))=0\det(\boldsymbol \gamma'(t), \boldsymbol \gamma''(t), \boldsymbol n(\boldsymbol \gamma(t))) = 0,所以

γ(t)=aγ(t)+bn(γ(t)),a,bR\boldsymbol \gamma''(t) = a \boldsymbol \gamma'(t) + b \boldsymbol n(\boldsymbol \gamma(t)),\ a,b \in \mathbb R

γ(t)Tγ(t)Sγ(t)n(γ(t))=0\boldsymbol \gamma'(t) \in T_{\boldsymbol \gamma(t)}S \implies \boldsymbol \gamma'(t) \cdot \boldsymbol n(\boldsymbol \gamma(t)) = 0

所以

γ(t)γ(t)=aγ(t)2\boldsymbol \gamma'(t) \cdot \boldsymbol \gamma''(t) = a \|\boldsymbol \gamma'(t)\|^2

其中

γ(t)γ(t)=12ddtγ(t)2=0a=0\boldsymbol \gamma'(t) \cdot \boldsymbol \gamma''(t) = \frac{1}{2} \frac{d}{dt} \|\boldsymbol \gamma'(t)\|^2 = 0 \implies a = 0

所以

γ(t)=bn(γ(t))Tγ(t)S\boldsymbol \gamma''(t) = b \boldsymbol n(\boldsymbol \gamma(t)) \perp T_{\boldsymbol \gamma(t)}S

示例
取球面 S=S2(r)S = S^2(r),法向量 n(p)=1rp,pS2(r)\boldsymbol n(\boldsymbol p) = \frac{1}{r} \boldsymbol p,\ \forall \boldsymbol p \in S^2(r)
ρ=r2h2\rho = \sqrt{r^2 - h^2},其中 h<r|h| < r,计算曲线

γ(t)=(ρcostρsinth),tR\boldsymbol \gamma(t) = \begin{pmatrix} \rho \cos t \\ \rho \sin t \\ h \end{pmatrix},\quad t \in \mathbb R

的测地曲率

γ(t)=(ρsintρcost0),γ(t)=(ρcostρsint0),n(γ(t))=1r(ρcostρsinth)\boldsymbol \gamma'(t) = \begin{pmatrix} -\rho \sin t \\ \rho \cos t \\ 0 \end{pmatrix},\quad \boldsymbol \gamma''(t) = \begin{pmatrix} -\rho \cos t \\ -\rho \sin t \\ 0 \end{pmatrix},\quad \boldsymbol n(\boldsymbol \gamma(t)) = \frac{1}{r} \begin{pmatrix} \rho \cos t \\ \rho \sin t \\ h \end{pmatrix}

所以测地曲率

κg(t)=1γ(t)3det(γ(t),γ(t),n(γ(t)))=1rρ3ρsintρcostρcostρcostρsintρsint00h=hrρ\kappa_g(t) = \frac{1}{\|\boldsymbol \gamma'(t)\|^3} \det(\boldsymbol \gamma'(t), \boldsymbol \gamma''(t), \boldsymbol n(\boldsymbol \gamma(t))) = \frac{1}{r \rho^3} \begin{vmatrix} -\rho \sin t & -\rho \cos t & \rho \cos t \\ \rho \cos t & -\rho \sin t & \rho \sin t \\ 0 & 0 & h \end{vmatrix} = \frac{h}{r \rho}

# 最短路径

(S,n)(S, \boldsymbol n) 为正则曲面 SS 的定向
SS 上两点 p,q\boldsymbol p, \boldsymbol q

问:在所有连接 p,q\boldsymbol p, \boldsymbol q 的,SS 上曲线中,哪一条曲线的长度最短?

示例

  • 平面上连接两点的最短路径为直线段
  • 球面上连接两点的最短路径为大圆弧

最短路径的存在性并不能被直接保证,就算存在,也不保证唯一

示例

  • 去心平面 S:={z=0}{(000)}S := \{z = 0\} \setminus \{\left(\begin{smallmatrix}0\\0\\0\end{smallmatrix}\right)\},不存在连接 p,pS\boldsymbol p, -\boldsymbol p \in S 的最短路径
  • 球面 S=S2(r)S = S^2(r) 上连接南北极点 p=(00r),q=(00r)S\boldsymbol p = \left(\begin{smallmatrix}0\\0\\r\end{smallmatrix}\right),\ \boldsymbol q = \left(\begin{smallmatrix}0\\0\\-r\end{smallmatrix}\right) \in S 的最短路径有无数条

令弧长参数化的曲线 x=γ(s),s[a,b]\boldsymbol x = \boldsymbol \gamma(s),\ s \in [a,b]

起点与终点设定:γ(a)=p,γ(b)=q\boldsymbol \gamma(a) = \boldsymbol p,\ \boldsymbol \gamma(b) = \boldsymbol q

以下给出变分法应用于几何对象上的定义

定义
SS 为正则曲面,p,qS\boldsymbol p, \boldsymbol q \in Sγ(s):[a,b]S\boldsymbol \gamma(s): [a,b] \to S 为连接 p,q\boldsymbol p, \boldsymbol qCC^\infty 弧长参数化曲线
CC^\infty 映射

F:(ϵ,ϵ)×[a,b]R3\boldsymbol F: (-\epsilon, \epsilon) \times [a,b] \to R^3

满足

  1. F(λ,s)S,(λ,s)(ϵ,ϵ)×[a,b]\boldsymbol F(\lambda, s) \in S,\quad \forall (\lambda,s) \in (-\epsilon, \epsilon) \times [a,b]
  2. F(λ,a)=p,F(λ,b)=q,λ(ϵ,ϵ)\boldsymbol F(\lambda, a) = \boldsymbol p,\quad \boldsymbol F(\lambda, b) = \boldsymbol q,\quad \forall \lambda \in (-\epsilon, \epsilon)
  3. F(0,s)=γ(s),s[a,b]\boldsymbol F(0,s) = \boldsymbol \gamma(s),\quad \forall s \in [a,b]

则称 F\boldsymbol F以曲线 γ\boldsymbol \gamma 为中心 的一个 变分 (variation)「変分」

固定 λ\lambda,令 γλ(s)=F(λ,s),s[a,b]\boldsymbol \gamma_\lambda(s) = \boldsymbol F(\lambda, s),\quad s \in [a,b]
由变分定义得 γλ\boldsymbol \gamma_\lambdaSS 上连接 p,q\boldsymbol p, \boldsymbol q 的曲线。所以,变分实际上是曲线 γ\boldsymbol \gamma连续变形

并且,考虑对 λ\lambda 的偏导数

VF(s):=Fλ(0,s)V_{\boldsymbol F}(s) := \frac{\partial \boldsymbol F}{\partial \lambda}(0,s)

如果固定 ss,则 VF(s)V_{\boldsymbol F}(s)SS 内的曲线 λF(λ,s)\lambda \mapsto \boldsymbol F(\lambda,s)λ=0\lambda = 0 处的切向量(速度)
换句话说,其表示了在 λ\lambda 变化时,曲线 γ\boldsymbol \gamma 的变化方向与速度,所以

VF(s)Tγ(s)S,s[a,b]V_{\boldsymbol F}(s) \in T_{\boldsymbol \gamma(s)}S,\quad \forall s \in [a,b]

变分示意图

通过变分分析,可以得出结论:最短路径的第一变分必须为零
即有如下一阶变分公式

命题
若曲线 γ\boldsymbol \gamma 为连接 p,q\boldsymbol p, \boldsymbol q 的最短路径,则

abVF(s)κg(s)ds=0\int_a^b V_{\boldsymbol F}(s) \cdot \boldsymbol \kappa_g(s) ds = 0

证明

γ\boldsymbol \gamma 的最短性,则对于任意变分 F\boldsymbol F,曲线族 γλ\boldsymbol \gamma_\lambda 的长度函数

L(λ)=abγλ(s)dsL(\lambda) = \int_a^b \left\|\boldsymbol \gamma_\lambda'(s)\right\| ds

λ=0\lambda = 0 处取得极小值,并且由于 γλ(s)=Fs(λ,s)\boldsymbol \gamma_\lambda'(s) = \frac{\partial \boldsymbol F}{\partial s}(\lambda,s),所以

0=dLdλ(0)=ddλabFs(λ,s)dsλ=0=ddλabFs(λ,s)Fs(λ,s)dsλ=0Fundamental Theorem of Calculus=ab12Fs(0,s)=γ(s)=1λ=0ddλ(Fs(λ,s)Fs(λ,s))λ=0ds=ab2Fλs(0,s)Fs(0,s)=γ(s)ds=by parts[Fλ(0,s)γ(s)]ab=0abFλ(0,s)γ(s)ds=abVF(s)γ(s)ds\begin{aligned} 0 = \frac{dL}{d\lambda}(0) &= \frac{d}{d\lambda} \int_a^b \left\| \frac{\partial \boldsymbol F}{\partial s}(\lambda,s) \right\| ds \Bigg|_{\lambda=0} \\ &= \underbrace{\frac{d}{d\lambda} \int_a^b \sqrt{ \frac{\partial \boldsymbol F}{\partial s}(\lambda,s) \cdot \frac{\partial \boldsymbol F}{\partial s}(\lambda,s) } ds \Bigg|_{\lambda=0}}_{\text{Fundamental Theorem of Calculus}} \\ &= \int_a^b \frac{1}{2 \underbrace{\left\| \frac{\partial \boldsymbol F}{\partial s}(0,s) \right\|}_{= \|\boldsymbol \gamma'(s)\| = 1} \Bigg|_{\lambda=0}} \cdot \frac{d}{d\lambda} \left( \frac{\partial \boldsymbol F}{\partial s}(\lambda,s) \cdot \frac{\partial \boldsymbol F}{\partial s}(\lambda,s) \right) \Bigg|_{\lambda=0} ds \\ &= \int_a^b \frac{\partial^2 \boldsymbol F}{\partial \lambda \partial s}(0,s) \cdot \underbrace{\frac{\partial \boldsymbol F}{\partial s}(0,s)}_{= \boldsymbol \gamma'(s)} ds \\ &\stackrel{\text{by parts}}{=} \underbrace{\left[ \frac{\partial \boldsymbol F}{\partial \lambda}(0,s) \cdot \boldsymbol \gamma'(s) \right]_a^b}_{=0} - \int_a^b \frac{\partial \boldsymbol F}{\partial \lambda}(0,s) \cdot \boldsymbol \gamma''(s) ds \\ &= - \int_a^b V_{\boldsymbol F}(s) \cdot \boldsymbol \gamma''(s) ds \end{aligned}

由于 VF(s)Tγ(s)SV_{\boldsymbol F}(s) \in T_{\boldsymbol \gamma(s)}S,所以 VF(s)κn(s)=0V_{\boldsymbol F}(s) \cdot \boldsymbol \kappa_n(s) = 0,从而

VF(s)γ(s)=VF(s)(κg(s)+κn(s))=VF(s)κg(s)V_{\boldsymbol F}(s) \cdot \boldsymbol \gamma''(s) = V_{\boldsymbol F}(s) \cdot \left( \boldsymbol \kappa_g(s) + \boldsymbol \kappa_n(s) \right) = V_{\boldsymbol F}(s) \cdot \boldsymbol \kappa_g(s)

进一步得到

0=abVF(s)γ(s)ds=abVF(s)κg(s)ds0 = - \int_a^b V_{\boldsymbol F}(s) \cdot \boldsymbol \gamma''(s) ds = - \int_a^b V_{\boldsymbol F}(s) \cdot \boldsymbol \kappa_g(s) ds

\square

能否构造一个 “特别的变分” 使得变分的法向分量 VF(s)V_{\boldsymbol F}(s) 可以等于任意给定的函数,例如 h(s)κg(s)h(s) \cdot \boldsymbol \kappa_g(s)
答案是:可以,而且可以做到 h0h \geq 0 且在某一点严格大于 00

命题
对于任意点 s0[a,b]s_0 \in [a,b]
存在满足以下条件的曲线 γ\boldsymbol \gamma 的变分,与 CC^\infty 映射 h:[a,b]Rh:[a,b] \to \mathbb R

  • VF(s)=h(s)κg(s),s[a,b]V_{\boldsymbol F}(s) = h(s) \cdot \boldsymbol \kappa_g(s),\quad \forall s \in [a,b]
  • h(s)0,h(s0)>0h(s) \geq 0,\ h(s_0) \gt 0
证明

γ\boldsymbol \gamma 的局部参数化 σ:DR3\boldsymbol \sigma: D \to \mathbb R^3
则对于满足 γ(s)σ(D)\boldsymbol \gamma(s) \in \boldsymbol \sigma(D)ss,记作 γ(s)=σ(u1(s),u2(s))\boldsymbol \gamma(s) = \boldsymbol \sigma(u^1(s), u^2(s))
那么测地曲率向量也可以被表示为

κg(s)=κg1(s)σ1(u1(s),u2(s))+κg2(s)σ2(u1(s),u2(s))\boldsymbol \kappa_g(s) = \kappa_g^1(s) \boldsymbol \sigma_1(u^1(s), u^2(s)) + \kappa_g^2(s) \boldsymbol \sigma_2(u^1(s), u^2(s))

取极小半径与误差 ρ,ϵ>0\rho, \epsilon \gt 0,使得

ss0<ρ,λ<ϵ(u1(s)+λκg1(s)u2(s)+λκg2(s))D|s - s_0| \lt \rho, \ |\lambda| \lt \epsilon \implies \begin{pmatrix} u^1(s) + \lambda \kappa_g^1(s) \\[4pt] u^2(s) + \lambda \kappa_g^2(s) \end{pmatrix} \in D

通过 ρ,ϵ\rho, \epsilon 可以构造

h(s)={exp(1ρ2(ss0)2),ss0<ρ0,otherwiseh(s) = \begin{cases} \exp\left( -\frac{1}{\rho^2 - (s - s_0)^2} \right), & |s - s_0| \lt \rho \\ 0, & \text{otherwise} \end{cases}

F(λ,s)={σ(u1(s)+λh(s)κg1(s),u2(s)+λh(s)κg2(s)),ss0<ρ,λ<ϵγ(s),otherwiseF(\lambda, s) = \begin{cases} \boldsymbol \sigma\left( u^1(s) + \lambda h(s) \kappa_g^1(s),\ u^2(s) + \lambda h(s) \kappa_g^2(s) \right), & |s - s_0| \lt \rho,\ |\lambda| \lt \epsilon \\ \boldsymbol \gamma(s), & \text{otherwise} \end{cases}

F\boldsymbol F 为曲线 γ\boldsymbol \gamma 的一个变分,且

VF(s)=Fλ(0,s)=h(s)(κg1(s)σ1(u1(s),u2(s))+κg2(s)σ2(u1(s),u2(s)))=h(s)κg(s)V_{\boldsymbol F}(s) = \frac{\partial \boldsymbol F}{\partial \lambda}(0,s) = h(s) \left( \kappa_g^1(s) \boldsymbol \sigma_1(u^1(s), u^2(s)) + \kappa_g^2(s) \boldsymbol \sigma_2(u^1(s), u^2(s)) \right) = h(s) \cdot \boldsymbol \kappa_g(s)

\square

从此命题可以证明一个重要结论,测地线为连接两点的最短路径的必要条件

定理
若曲线 γ\boldsymbol \gamma 为连接 p,q\boldsymbol p, \boldsymbol q 的最短路径,则 γ\boldsymbol \gamma 为测地线

证明

根据最短路径条件,可得

abVF(s)κg(s)ds=0\int_a^b V_{\boldsymbol F}(s) \cdot \boldsymbol \kappa_g(s) ds = 0

应用前一命题中构造的变分存在性,可以得到

abVF(s)κg(s)ds=ab(h(s)κg(s))κg(s)ds=abh(s)κg(s)2ds=0\int_a^b V_{\boldsymbol F}(s) \cdot \boldsymbol \kappa_g(s) ds = \int_a^b (h(s) \cdot \boldsymbol \kappa_g(s)) \cdot \boldsymbol \kappa_g(s) ds = \int_a^b h(s) \|\boldsymbol \kappa_g(s)\|^2 ds = 0

由于 h(s)0h(s) \geq 0 且在某一点严格大于 00,所以只能有

κg(s)2=0,s[a,b]\|\boldsymbol \kappa_g(s)\|^2 = 0,\quad \forall s \in [a,b]

κg0\boldsymbol \kappa_g \equiv \boldsymbol 0,从而得到 γ\boldsymbol \gamma 为测地线(弧长参数化已经保证了 γ(s)\|\boldsymbol \gamma'(s)\| 恒为常数)
\square