曲率是微分几何研究的中心内容
以下令曲线 c : I → R n \boldsymbol c: I \to \mathbb R^n c : I → R n 为弧长参数化下的正则曲线
# 曲率
众所周知,一阶微分评价曲线的变化速度,通过已知曲线在任意一点的速度即可确定出曲线的路径,这使得一阶微分具有无可比拟的意义。在物理意义上等价于速度向量
称曲线的一阶微分 c ′ ( s ) \boldsymbol c'(s) c ′ ( s ) 为曲线的 单位切向量场 (Unit Tangent Vector Field)「単位接ベクトル場」 ,记作
t ( s ) : = c ′ ( s ) \boldsymbol t(s) := \boldsymbol c'(s)
t ( s ) : = c ′ ( s )
但是实际上仅有一阶微分是不够的,因为微分的过程会使得常数项消失,曲线发生偏移。因此需要切向量场 t \boldsymbol t t 的标杆,需要一个能时刻指示出曲线在沿着非速度方向上的偏移量。从物理的角度考虑,这一节路径正是惯性主导的运动量。为此需要对速度微分获得加速度向量
由于 c \boldsymbol c c 是弧长参数化下的曲线,这使得速度 t ( s ) \boldsymbol t(s) t ( s ) 始终为单位向量,我们希望这个美好的性质能传递下去,所以进行归一化。定义
n 1 ( s ) : = t ′ ( s ) ∥ t ′ ( s ) ∥ \boldsymbol n_1(s) := \frac{\boldsymbol t'(s)}{\|\boldsymbol t'(s)\|}
n 1 ( s ) : = ∥ t ′ ( s ) ∥ t ′ ( s )
称 n 1 ( s ) \boldsymbol n_1(s) n 1 ( s ) 为曲线 c \boldsymbol c c 的 第 1 1 1 法向量场 (First Normal Vector Field)「第 1 1 1 法線ベクトル場」 。
在这个过程中,t ′ \boldsymbol t' t ′ 的模长为了实现归一化被除去,但是它本身的数值直接指示了曲线的弯曲速度,定义
κ 1 ( s ) : = ∥ t ′ ( s ) ∥ \kappa_1(s) := \|\boldsymbol t'(s)\|
κ 1 ( s ) : = ∥ t ′ ( s ) ∥
称 κ 1 ( s ) \kappa_1(s) κ 1 ( s ) 为曲线 c \boldsymbol c c 的 第 1 1 1 曲率 (First Curvature)「第 1 1 1 曲率」 。
定义
O 1 ( s ) : = S p a n { t ( s ) , n 1 ( s ) } : = { λ 1 t ( s ) + λ 2 n 1 ( s ) ∣ λ 1 , λ 2 ∈ R } \mathcal O_1(s) := \mathrm{Span}\{\boldsymbol t(s), \boldsymbol n_1(s)\} := \{\lambda_1 \boldsymbol t(s) + \lambda_2 \boldsymbol n_1(s) \mid \lambda_1, \lambda_2 \in \mathbb R\}
O 1 ( s ) : = S p a n { t ( s ) , n 1 ( s ) } : = { λ 1 t ( s ) + λ 2 n 1 ( s ) ∣ λ 1 , λ 2 ∈ R }
为曲线 c \boldsymbol c c 在点 c ( s ) \boldsymbol c(s) c ( s ) 处的 第一接触空间 (First Osculating Space)「第 1 1 1 接触空間」 。
命题
A 1 : = { t ( s ) , n 1 ( s ) } \mathscr A_1 := \{\boldsymbol t(s), \boldsymbol n_1(s)\} A 1 : = { t ( s ) , n 1 ( s ) } 构成 O 1 ( s ) \mathcal O_1(s) O 1 ( s ) 的正交归一基底
证明
只需要证明二者正交。注意 ∥ t ( s ) ∥ = 1 \|\boldsymbol t(s)\| = 1 ∥ t ( s ) ∥ = 1 ,对任意 s s s 成立。对两边进行求导得到
0 = d d s 1 = d d s ( t ( s ) ⋅ t ( s ) ) = 2 t ′ ( s ) ⋅ t ( s ) \begin{aligned}
0 = \frac{d}{ds} 1 &= \frac{d}{ds} (\boldsymbol t(s) \cdot \boldsymbol t(s)) \\
&= 2 \boldsymbol t'(s) \cdot \boldsymbol t(s)
\end{aligned} 0 = d s d 1 = d s d ( t ( s ) ⋅ t ( s ) ) = 2 t ′ ( s ) ⋅ t ( s )
因此 t ′ ( s ) ⋅ t ( s ) = 0 \boldsymbol t'(s) \cdot \boldsymbol t(s) = 0 t ′ ( s ) ⋅ t ( s ) = 0 ,即
n 1 ( s ) ⋅ t ( s ) = κ 1 ( s ) − 1 t ′ ( s ) ⋅ t ( s ) = 0 \boldsymbol n_1(s) \cdot \boldsymbol t(s) = \kappa_1(s)^{-1} \boldsymbol t'(s) \cdot \boldsymbol t(s) = 0
n 1 ( s ) ⋅ t ( s ) = κ 1 ( s ) − 1 t ′ ( s ) ⋅ t ( s ) = 0
□ \square □
O 1 ( s ) \mathcal O_1(s) O 1 ( s ) 成为 R n \mathbb R^n R n 中的一个二维子空间,但是显而易见的是,曲线 c \boldsymbol c c 的运动不会局限于二维。虽然构建出了一个速度向量,以及 O 1 ( s ) \boldsymbol O_1(s) O 1 ( s ) 中对应的法向量,但是曲线在更高维空间中的偏移并没有被描述出来
于是,对上述过程进行推广,这次对第一法向量场进行微分分析。可以拆解为处于 O 1 ( s ) \mathcal O_1(s) O 1 ( s ) 中的分量与垂直于 O 1 ( s ) \mathcal O_1(s) O 1 ( s ) 的分量
n 1 ′ ( s ) = α ( s ) t ( s ) + β ( s ) n 1 ( s ) ⏟ First Osculating Space + w ( s ) , α ( s ) , β ( s ) ∈ R , w ( s ) ∈ O 1 ( s ) ⊥ \boldsymbol n_1'(s) = \underbrace{\alpha(s) \boldsymbol t(s) + \beta(s) \boldsymbol n_1(s)}_{\text{First Osculating Space}} + \boldsymbol w(s) ,\quad \alpha(s),\beta(s) \in \mathbb R,\ \boldsymbol w(s) \in \mathcal O_1(s)^\perp
n 1 ′ ( s ) = First Osculating Space α ( s ) t ( s ) + β ( s ) n 1 ( s ) + w ( s ) , α ( s ) , β ( s ) ∈ R , w ( s ) ∈ O 1 ( s ) ⊥
对原先未能给出的维度进行描述,定义归一化的补偿向量为曲线 c \boldsymbol c c 的 第 2 2 2 法向量场 (Second Normal Vector Field)「第 2 2 2 法線ベクトル場」 :
n 2 ( s ) : = w ( s ) ∥ w ( s ) ∥ \boldsymbol n_2(s) := \frac{\boldsymbol w(s)}{\|\boldsymbol w(s)\|}
n 2 ( s ) : = ∥ w ( s ) ∥ w ( s )
称被移除的模长
κ 2 ( s ) : = ∥ w ( s ) ∥ \kappa_2(s) := \|\boldsymbol w(s)\|
κ 2 ( s ) : = ∥ w ( s ) ∥
为曲线 c \boldsymbol c c 的 第 2 2 2 曲率 (Second Curvature)「第 2 2 2 曲率」 。
尝试通过内积解出其他分量
α ( s ) = n 1 ′ ( s ) ⋅ t ( s ) = − n 1 ( s ) ⋅ t ′ ( s ) ⏟ d d s ( n 1 ⋅ t ) = 0 = − κ 1 ( s ) n 1 ( s ) ⋅ n 1 ( s ) = − κ 1 ( s ) β ( s ) = n 1 ′ ( s ) ⋅ n 1 ( s ) = 1 2 d d s ( n 1 ( s ) ⋅ n 1 ( s ) ) = 0 \begin{aligned}
\alpha(s) &= \boldsymbol n_1'(s) \cdot \boldsymbol t(s) \\
&= \underbrace{-\boldsymbol n_1(s) \cdot \boldsymbol t'(s)}_{\frac{d}{ds}(\boldsymbol n_1 \cdot \boldsymbol t) = 0} \\
&= -\kappa_1(s) \boldsymbol n_1(s) \cdot \boldsymbol n_1(s) = -\kappa_1(s) \\
\beta(s) &= \boldsymbol n_1'(s) \cdot \boldsymbol n_1(s) = \frac{1}{2} \frac{d}{ds} (\boldsymbol n_1(s) \cdot \boldsymbol n_1(s)) = 0
\end{aligned} α ( s ) β ( s ) = n 1 ′ ( s ) ⋅ t ( s ) = d s d ( n 1 ⋅ t ) = 0 − n 1 ( s ) ⋅ t ′ ( s ) = − κ 1 ( s ) n 1 ( s ) ⋅ n 1 ( s ) = − κ 1 ( s ) = n 1 ′ ( s ) ⋅ n 1 ( s ) = 2 1 d s d ( n 1 ( s ) ⋅ n 1 ( s ) ) = 0
那么,微分可以写为
n 1 ′ ( s ) = − κ 1 ( s ) t ( s ) + κ 2 ( s ) n 2 ( s ) \boldsymbol n_1'(s) = -\kappa_1(s) \boldsymbol t(s) + \kappa_2(s) \boldsymbol n_2(s)
n 1 ′ ( s ) = − κ 1 ( s ) t ( s ) + κ 2 ( s ) n 2 ( s )
因此可以评估的范围得到了扩张,定义曲线的 第二接触空间 (Second Osculating Space)「第 2 2 2 接触空間」 为
O 2 ( s ) : = S p a n { t ( s ) , n 1 ( s ) , n 2 ( s ) } \mathcal O_2(s) := \mathrm{Span}\{\boldsymbol t(s), \boldsymbol n_1(s), \boldsymbol n_2(s)\}
O 2 ( s ) : = S p a n { t ( s ) , n 1 ( s ) , n 2 ( s ) }
命题
A 2 : = { t ( s ) , n 1 ( s ) , n 2 ( s ) } \mathscr A_2 := \{\boldsymbol t(s), \boldsymbol n_1(s), \boldsymbol n_2(s)\} A 2 : = { t ( s ) , n 1 ( s ) , n 2 ( s ) } 构成 O 2 ( s ) : = S p a n { t ( s ) , n 1 ( s ) , n 2 ( s ) } \mathcal O_2(s) := \mathrm{Span}\{\boldsymbol t(s), \boldsymbol n_1(s), \boldsymbol n_2(s)\} O 2 ( s ) : = S p a n { t ( s ) , n 1 ( s ) , n 2 ( s ) } 的正交归一基底
证明
由于 n 2 ( s ) ∈ O 1 ( s ) ⊥ \boldsymbol n_2(s) \in \mathcal O_1(s)^\perp n 2 ( s ) ∈ O 1 ( s ) ⊥ ,所以与 t ( s ) , n 1 ( s ) \boldsymbol t(s), \boldsymbol n_1(s) t ( s ) , n 1 ( s ) 正交,并且自身已经为单位向量
□ \square □
同样地,对第二法向量场进行微分,得到
n 2 ′ ( s ) = γ 1 ( s ) t ( s ) + γ 2 ( s ) n 1 ( s ) + γ 3 ( s ) n 2 ( s ) ⏟ Second Osculating Space + z ( s ) , γ 1 ( s ) , γ 2 ( s ) , γ 3 ( s ) ∈ R , z ( s ) ∈ O 2 ( s ) ⊥ \boldsymbol n_2'(s) = \underbrace{\gamma_1(s) \boldsymbol t(s) + \gamma_2(s) \boldsymbol n_1(s) + \gamma_3(s) \boldsymbol n_2(s)}_{\text{Second Osculating Space}} + \boldsymbol z(s), \quad \gamma_1(s),\gamma_2(s),\gamma_3(s) \in \mathbb R,\ \boldsymbol z(s) \in \mathcal O_2(s)^\perp
n 2 ′ ( s ) = Second Osculating Space γ 1 ( s ) t ( s ) + γ 2 ( s ) n 1 ( s ) + γ 3 ( s ) n 2 ( s ) + z ( s ) , γ 1 ( s ) , γ 2 ( s ) , γ 3 ( s ) ∈ R , z ( s ) ∈ O 2 ( s ) ⊥
定义曲线 c \boldsymbol c c 的 第 3 3 3 法向量场 (Third Normal Vector Field)「第 3 3 3 法線ベクトル場」 :
n 3 ( s ) : = z ( s ) ∥ z ( s ) ∥ \boldsymbol n_3(s) := \frac{\boldsymbol z(s)}{\|\boldsymbol z(s)\|}
n 3 ( s ) : = ∥ z ( s ) ∥ z ( s )
定义曲线 c \boldsymbol c c 的 第 3 3 3 曲率 (Third Curvature)「第 3 3 3 曲率」 :
κ 3 ( s ) : = ∥ z ( s ) ∥ \kappa_3(s) := \|\boldsymbol z(s)\|
κ 3 ( s ) : = ∥ z ( s ) ∥
求解分量:
γ 1 ( s ) = n 2 ′ ( s ) ⋅ t ( s ) = − n 2 ( s ) ⋅ t ′ ( s ) = − κ 1 ( s ) n 2 ( s ) ⋅ n 1 ( s ) = 0 γ 2 ( s ) = n 2 ′ ( s ) ⋅ n 1 ( s ) = − n 2 ( s ) ⋅ n 1 ′ ( s ) = − κ 2 ( s ) n 2 ( s ) ⋅ n 2 ( s ) = − κ 2 ( s ) γ 3 ( s ) = n 2 ′ ( s ) ⋅ n 2 ( s ) = 1 2 d d s ( n 2 ( s ) ⋅ n 2 ( s ) ) = 0 \begin{aligned}
\gamma_1(s) &= \boldsymbol n_2'(s) \cdot \boldsymbol t(s) = -\boldsymbol n_2(s) \cdot \boldsymbol t'(s) = -\kappa_1(s) \boldsymbol n_2(s) \cdot \boldsymbol n_1(s) = 0 \\
\gamma_2(s) &= \boldsymbol n_2'(s) \cdot \boldsymbol n_1(s) = -\boldsymbol n_2(s) \cdot \boldsymbol n_1'(s) = -\kappa_2(s) \boldsymbol n_2(s) \cdot \boldsymbol n_2(s) = -\kappa_2(s) \\
\gamma_3(s) &= \boldsymbol n_2'(s) \cdot \boldsymbol n_2(s) = \frac{1}{2} \frac{d}{ds} (\boldsymbol n_2(s) \cdot \boldsymbol n_2(s)) = 0
\end{aligned} γ 1 ( s ) γ 2 ( s ) γ 3 ( s ) = n 2 ′ ( s ) ⋅ t ( s ) = − n 2 ( s ) ⋅ t ′ ( s ) = − κ 1 ( s ) n 2 ( s ) ⋅ n 1 ( s ) = 0 = n 2 ′ ( s ) ⋅ n 1 ( s ) = − n 2 ( s ) ⋅ n 1 ′ ( s ) = − κ 2 ( s ) n 2 ( s ) ⋅ n 2 ( s ) = − κ 2 ( s ) = n 2 ′ ( s ) ⋅ n 2 ( s ) = 2 1 d s d ( n 2 ( s ) ⋅ n 2 ( s ) ) = 0
那么改写微分为
n 2 ′ ( s ) = − κ 2 ( s ) n 1 ( s ) + κ 3 ( s ) n 3 ( s ) \boldsymbol n_2'(s) = -\kappa_2(s) \boldsymbol n_1(s) + \kappa_3(s) \boldsymbol n_3(s)
n 2 ′ ( s ) = − κ 2 ( s ) n 1 ( s ) + κ 3 ( s ) n 3 ( s )
构造出曲线的 第三接触空间 (Third Osculating Space)「第 3 3 3 接触空間」 :
O 3 ( s ) : = S p a n { t ( s ) , n 1 ( s ) , n 2 ( s ) , n 3 ( s ) } \mathcal O_3(s) := \mathrm{Span}\{\boldsymbol t(s), \boldsymbol n_1(s), \boldsymbol n_2(s), \boldsymbol n_3(s)\}
O 3 ( s ) : = S p a n { t ( s ) , n 1 ( s ) , n 2 ( s ) , n 3 ( s ) }
以此类推,可以得到
n i ′ ( s ) = − κ i ( s ) n i − 1 ( s ) + κ i + 1 ( s ) n i + 1 ( s ) \boldsymbol n_i'(s) = -\kappa_i(s) \boldsymbol n_{i-1}(s) + \kappa_{i+1}(s) \boldsymbol n_{i+1}(s)
n i ′ ( s ) = − κ i ( s ) n i − 1 ( s ) + κ i + 1 ( s ) n i + 1 ( s )
将上述结果汇总,可以得到曲线的 Frenet-Serret 公式:
{ t ′ ( s ) = κ 1 ( s ) n 1 ( s ) n 1 ′ ( s ) = − κ 1 ( s ) t ( s ) + κ 2 ( s ) n 2 ( s ) n 2 ′ ( s ) = − κ 2 ( s ) n 1 ( s ) + κ 3 ( s ) n 3 ( s ) ⋮ n n − 2 ′ ( s ) = − κ n − 2 ( s ) n n − 3 ( s ) + κ n − 1 ( s ) n n − 1 ( s ) n n − 1 ′ ( s ) = − κ n − 1 ( s ) n n − 2 ( s ) \begin{cases}
\boldsymbol t'(s) = \kappa_1(s) \boldsymbol n_1(s) \\
\boldsymbol n_1'(s) = -\kappa_1(s) \boldsymbol t(s) + \kappa_2(s) \boldsymbol n_2(s) \\
\boldsymbol n_2'(s) = -\kappa_2(s) \boldsymbol n_1(s) + \kappa_3(s) \boldsymbol n_3(s) \\
\vdots \\
\boldsymbol n_{n-2}'(s) = -\kappa_{n-2}(s) \boldsymbol n_{n-3}(s) + \kappa_{n-1}(s) \boldsymbol n_{n-1}(s) \\
\boldsymbol n_{n-1}'(s) = -\kappa_{n-1}(s) \boldsymbol n_{n-2}(s)
\end{cases} ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ t ′ ( s ) = κ 1 ( s ) n 1 ( s ) n 1 ′ ( s ) = − κ 1 ( s ) t ( s ) + κ 2 ( s ) n 2 ( s ) n 2 ′ ( s ) = − κ 2 ( s ) n 1 ( s ) + κ 3 ( s ) n 3 ( s ) ⋮ n n − 2 ′ ( s ) = − κ n − 2 ( s ) n n − 3 ( s ) + κ n − 1 ( s ) n n − 1 ( s ) n n − 1 ′ ( s ) = − κ n − 1 ( s ) n n − 2 ( s )
至此,A : = { t ( s ) , n 1 ( s ) , … , n n − 1 ( s ) } \mathscr A := \{\boldsymbol t(s), \boldsymbol n_1(s), \ldots, \boldsymbol n_{n-1}(s)\} A : = { t ( s ) , n 1 ( s ) , … , n n − 1 ( s ) } 构成了 R n \mathbb R^n R n 的正交归一基底,特别称为 Frenet 标架 (Frenet Frame)「フレネ枠」 。
曲线 c \boldsymbol c c 在任意点处的运动均可通过该基底进行描述
# 空间曲线与平面曲线
实际问题中,最常见的曲线为平面曲线与空间曲线,此时不需要将曲率和法向量等概念推广至更高维空间。简单地:
称第 1 1 1 曲率 κ 1 \kappa_1 κ 1 为 曲率 (curvature)「曲率」 ,记作 κ \kappa κ
称第 2 2 2 曲率 κ 2 \kappa_2 κ 2 为 挠率 (torsion)「捩率」 ,记作 τ \tau τ
称第 1 1 1 法向量场 n 1 \boldsymbol n_1 n 1 为 主法向量 (Principal Normal Vector)「主法線ベクトル」 ,记作 n \boldsymbol n n
称第 2 2 2 法向量场 n 2 \boldsymbol n_2 n 2 为 副法向量 (Binormal Vector)「副法線ベクトル」 ,记作 b \boldsymbol b b
曲率本身的定义依赖于模长,这使得向量的方向被丢失,由于 t ′ ( s ) \boldsymbol t'(s) t ′ ( s ) 与 c ′ ( s ) \boldsymbol c'(s) c ′ ( s ) 正交,说明 t ′ ( s ) \boldsymbol t'(s) t ′ ( s ) 一定在法向量方向上,即存在标量函数 κ ~ ( s ) \widetilde \kappa(s) κ ( s ) 使得
t ′ ( s ) = κ ~ ( s ) n ( s ) \boldsymbol t'(s) = \widetilde \kappa(s) \boldsymbol n(s)
t ′ ( s ) = κ ( s ) n ( s )
称此处唯一确定的曲率 κ ~ ( s ) \widetilde \kappa(s) κ ( s ) 称为 带向曲率 ,该曲率可能取正可能取负也可能为零,符号表示曲线弯曲的方向
曲线为 向法向量 方向弯曲时,带向曲率为正
曲线为 背离法向量 方向弯曲时,带向曲率为负
该符号的方向直接影响了主法向量场的方向,即
κ ~ ( s ) > 0 ⟺ { t ( s ) , n ( s ) } \widetilde \kappa(s) \gt 0 \iff \{\boldsymbol t(s), \boldsymbol n(s)\} κ ( s ) > 0 ⟺ { t ( s ) , n ( s ) } 构成右手系基底
κ ~ ( s ) < 0 ⟺ { t ( s ) , n ( s ) } \widetilde \kappa(s) \lt 0 \iff \{\boldsymbol t(s), \boldsymbol n(s)\} κ ( s ) < 0 ⟺ { t ( s ) , n ( s ) } 构成左手系基底
直观上,可以按照如下说明理解两个曲率的作用
曲率 κ \kappa κ 控制曲线 “弯” 的程度
挠率 τ \tau τ 控制曲线 “扭” 的速度
在维度 3 3 3 的简化下,Frenet-Serret 公式可以写为
{ t ′ ( s ) = κ ( s ) n ( s ) n ′ ( s ) = − κ ( s ) t ( s ) + τ ( s ) b ( s ) b ′ ( s ) = − τ ( s ) n ( s ) \begin{cases}
\boldsymbol t'(s) = \kappa(s) \boldsymbol n(s) \\
\boldsymbol n'(s) = -\kappa(s) \boldsymbol t(s) + \tau(s) \boldsymbol b(s) \\
\boldsymbol b'(s) = -\tau(s) \boldsymbol n(s)
\end{cases} ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ t ′ ( s ) = κ ( s ) n ( s ) n ′ ( s ) = − κ ( s ) t ( s ) + τ ( s ) b ( s ) b ′ ( s ) = − τ ( s ) n ( s )
改写为矩阵形式得到
d d s ( t ( s ) n ( s ) b ( s ) ) = ( 0 κ ( s ) 0 − κ ( s ) 0 τ ( s ) 0 − τ ( s ) 0 ) ( t ( s ) n ( s ) b ( s ) ) \frac{d}{ds} \begin{pmatrix} \boldsymbol t(s) \\ \boldsymbol n(s) \\ \boldsymbol b(s) \end{pmatrix} = \begin{pmatrix} 0 & \kappa(s) & 0 \\ -\kappa(s) & 0 & \tau(s) \\ 0 & -\tau(s) & 0 \end{pmatrix} \begin{pmatrix} \boldsymbol t(s) \\ \boldsymbol n(s) \\ \boldsymbol b(s) \end{pmatrix}
d s d ⎝ ⎛ t ( s ) n ( s ) b ( s ) ⎠ ⎞ = ⎝ ⎛ 0 − κ ( s ) 0 κ ( s ) 0 − τ ( s ) 0 τ ( s ) 0 ⎠ ⎞ ⎝ ⎛ t ( s ) n ( s ) b ( s ) ⎠ ⎞
这实际上是一个线性微分方程组,只要已知系数矩阵就可以通过矩阵指数的方式求解
( t ( s ) n ( s ) b ( s ) ) = exp ( ∫ s 0 s ( 0 κ ( u ) 0 − κ ( u ) 0 τ ( u ) 0 − τ ( u ) 0 ) d u ) ( t ( s 0 ) n ( s 0 ) b ( s 0 ) ) \begin{pmatrix} \boldsymbol t(s) \\ \boldsymbol n(s) \\ \boldsymbol b(s) \end{pmatrix} = \exp\left(\int_{s_0}^s \begin{pmatrix} 0 & \kappa(u) & 0 \\ -\kappa(u) & 0 & \tau(u) \\ 0 & -\tau(u) & 0 \end{pmatrix} du\right) \begin{pmatrix} \boldsymbol t(s_0) \\ \boldsymbol n(s_0) \\ \boldsymbol b(s_0) \end{pmatrix}
⎝ ⎛ t ( s ) n ( s ) b ( s ) ⎠ ⎞ = exp ⎝ ⎛ ∫ s 0 s ⎝ ⎛ 0 − κ ( u ) 0 κ ( u ) 0 − τ ( u ) 0 τ ( u ) 0 ⎠ ⎞ d u ⎠ ⎞ ⎝ ⎛ t ( s 0 ) n ( s 0 ) b ( s 0 ) ⎠ ⎞
更简化地,考虑平面曲线
在平面上通过曲率,可以刻画出曲率圆。
在曲率不为零时,称其倒数
ρ ( s ) : = 1 κ ( s ) \rho(s) := \frac{1}{\kappa(s)} \quad
ρ ( s ) : = κ ( s ) 1
为曲线在点 c ( s ) \boldsymbol c(s) c ( s ) 处的 曲率半径
同时,令圆心
o ( s ) : = c ( s ) + 1 κ ~ ( s ) n ( s ) \boldsymbol o(s) := \boldsymbol c(s) + \frac{1}{\widetilde \kappa(s)} \boldsymbol n(s)
o ( s ) : = c ( s ) + κ ( s ) 1 n ( s )
那么,以 o ( s ) \boldsymbol o(s) o ( s ) 为圆心,ρ ( s ) \rho(s) ρ ( s ) 为半径的圆称为曲线在点 c ( s ) \boldsymbol c(s) c ( s ) 处的 曲率圆 。
C ( θ ) = o ( s ) + ρ ( s ) ( cos θ sin θ ) \boldsymbol C(\theta) = \boldsymbol o(s) + \rho(s) \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}
C ( θ ) = o ( s ) + ρ ( s ) ( cos θ sin θ )
通过曲率圆,可以直观地理解曲率的意义:在平面上曲率蕴含的信息等价于曲线蕴含的信息,即唯一确定曲率可以唯一确定曲线,让我们来尝试构造这一过程
设平面曲线 c ( s ) \boldsymbol c(s) c ( s ) 的带向曲率为 κ ~ ( s ) \widetilde \kappa(s) κ ( s ) ,t ( s ) \boldsymbol t(s) t ( s ) 为其切向量场。因为 t ( s ) \boldsymbol t(s) t ( s ) 是单位向量,所以可以将其表示为
t ( s ) = ( cos θ ( s ) sin θ ( s ) ) , t ′ ( s ) = θ ′ ( s ) ( − sin θ ( s ) cos θ ( s ) ) \boldsymbol t(s) = \begin{pmatrix} \cos \theta(s) \\ \sin \theta(s) \end{pmatrix},\quad
\boldsymbol t'(s) = \theta'(s) \begin{pmatrix} -\sin \theta(s) \\ \cos \theta(s) \end{pmatrix} t ( s ) = ( cos θ ( s ) sin θ ( s ) ) , t ′ ( s ) = θ ′ ( s ) ( − sin θ ( s ) cos θ ( s ) )
曲率的定义给出其为系数,即
κ ( s ) = d d s θ ( s ) \kappa(s) = \frac{d}{ds} \theta(s)
κ ( s ) = d s d θ ( s )
两边积分,还原出 θ ( s ) \theta(s) θ ( s )
θ ( s ) = ∫ s 0 s κ ( u ) d u + θ ( s 0 ) \theta(s) = \int_{s_0}^s \kappa(u) du + \theta(s_0)
θ ( s ) = ∫ s 0 s κ ( u ) d u + θ ( s 0 )
这样一来就获得了切向量场 t ( s ) \boldsymbol t(s) t ( s ) 的表达式,进而两边积分可以得到曲线 c ( s ) \boldsymbol c(s) c ( s ) 的表达式
c ( s ) = ( ∫ s 0 s cos ( ∫ s 0 u κ ( v ) d v + θ ( s 0 ) ) d u + b 1 ∫ s 0 s sin ( ∫ s 0 u κ ( v ) d v + θ ( s 0 ) ) d u + b 2 ) \boldsymbol c(s) = \begin{pmatrix}
\displaystyle\int_{s_0}^s \cos \left(\int_{s_0}^u \kappa(v) dv + \theta(s_0)\right) du + b_1\\[12pt]
\displaystyle\int_{s_0}^s \sin \left(\int_{s_0}^u \kappa(v) dv + \theta(s_0)\right) du + b_2
\end{pmatrix} c ( s ) = ⎝ ⎜ ⎜ ⎜ ⎜ ⎛ ∫ s 0 s cos ( ∫ s 0 u κ ( v ) d v + θ ( s 0 ) ) d u + b 1 ∫ s 0 s sin ( ∫ s 0 u κ ( v ) d v + θ ( s 0 ) ) d u + b 2 ⎠ ⎟ ⎟ ⎟ ⎟ ⎞
# 非弧长参数化下的曲率推导
上述定义中依赖于弧长参数化,以下推导 非弧长参数化下 的曲率公式,令曲线为一般空间曲线 c = c ( t ) \boldsymbol c = \boldsymbol c(t) c = c ( t )
由弧长参数定义以及微积分基本定理,得到
s ( t ) = ∫ t 0 t ∥ c ′ ( u ) ∣ d u ⟹ d s d t = ∥ c ′ ( t ) ∥ s(t) = \int_{t_0}^t \|\boldsymbol c'(u)| du \implies \frac{ds}{dt} = \|\boldsymbol c'(t)\|
s ( t ) = ∫ t 0 t ∥ c ′ ( u ) ∣ d u ⟹ d t d s = ∥ c ′ ( t ) ∥
将 s s s 视作 t t t 的函数,利用链式法则,得到
c ′ ( s ) = d c d s ( s ( t ) ) = d c d t ( t ) ⋅ d t d s \boldsymbol c'(s) = \frac{d\boldsymbol c}{ds}(s(t)) = \frac{d\boldsymbol c}{dt}(t) \cdot \frac{dt}{ds}
c ′ ( s ) = d s d c ( s ( t ) ) = d t d c ( t ) ⋅ d s d t
进一步可以计算出二阶微分
c ′ ′ ( s ) = d d s ( c ′ ( t ) ⋅ d t d s ) = c ′ ′ ( t ) ( d t d s ) 2 + c ′ ( t ) ⋅ d 2 t d s 2 \boldsymbol c''(s) = \frac{d}{ds}\left(\boldsymbol c'(t) \cdot \frac{dt}{ds}\right) = \boldsymbol c''(t) \left(\frac{dt}{ds}\right)^2 + \boldsymbol c'(t) \cdot \frac{d^2 t}{ds^2}
c ′ ′ ( s ) = d s d ( c ′ ( t ) ⋅ d s d t ) = c ′ ′ ( t ) ( d s d t ) 2 + c ′ ( t ) ⋅ d s 2 d 2 t
将 d t d s = 1 ∥ c ′ ( t ) ∥ \frac{dt}{ds} = \frac{1}{\|\boldsymbol c'(t)\|} d s d t = ∥ c ′ ( t ) ∥ 1 代入上式
c ′ ′ ( s ) = ∥ c ′ ( t ) ∥ 2 c ′ ′ ( t ) − ( c ′ ( t ) ⋅ c ′ ′ ( t ) ) c ′ ( t ) ∥ c ′ ( t ) ∥ 4 = ( c ′ ( t ) ⋅ c ′ ( t ) ) c ′ ′ ( t ) − ( c ′ ( t ) ⋅ c ′ ′ ( t ) ) c ′ ( t ) ∥ c ′ ( t ) ∥ 4 = c ′ ( t ) × ( c ′ ′ ( t ) × c ′ ( t ) ) ∥ c ′ ( t ) ∥ 4 \begin{aligned}
\boldsymbol c''(s)
&= \frac{\|\boldsymbol c'(t)\|^2 \boldsymbol c''(t) - (\boldsymbol c'(t) \cdot \boldsymbol c''(t)) \boldsymbol c'(t)}{\|\boldsymbol c'(t)\|^4} \\
&= \frac{(\boldsymbol c'(t) \cdot \boldsymbol c'(t)) \boldsymbol c''(t) - (\boldsymbol c'(t) \cdot \boldsymbol c''(t)) \boldsymbol c'(t)}{\|\boldsymbol c'(t)\|^4} \\
&= \frac{\boldsymbol c'(t) \times (\boldsymbol c''(t) \times \boldsymbol c'(t))}{\|\boldsymbol c'(t)\|^4}
\end{aligned} c ′ ′ ( s ) = ∥ c ′ ( t ) ∥ 4 ∥ c ′ ( t ) ∥ 2 c ′ ′ ( t ) − ( c ′ ( t ) ⋅ c ′ ′ ( t ) ) c ′ ( t ) = ∥ c ′ ( t ) ∥ 4 ( c ′ ( t ) ⋅ c ′ ( t ) ) c ′ ′ ( t ) − ( c ′ ( t ) ⋅ c ′ ′ ( t ) ) c ′ ( t ) = ∥ c ′ ( t ) ∥ 4 c ′ ( t ) × ( c ′ ′ ( t ) × c ′ ( t ) )
取模长得到曲率
κ ( t ) = ∥ c ′ ′ ( s ( t ) ) ∥ = ∥ c ′ ( t ) × ( c ′ ′ ( t ) × c ′ ( t ) ) ∥ ∥ c ′ ( t ) ∥ 4 = ∥ c ′ ( t ) × c ′ ′ ( t ) ∥ ∥ c ′ ( t ) ∥ 3 \begin{aligned}
\kappa(t) =
\|\boldsymbol c''(s(t))\| &= \frac{\|\boldsymbol c'(t) \times (\boldsymbol c''(t) \times \boldsymbol c'(t))\|}{\|\boldsymbol c'(t)\|^4} \\
&= \frac{\|\boldsymbol c'(t) \times \boldsymbol c''(t)\|}{\|\boldsymbol c'(t)\|^3}
\end{aligned} κ ( t ) = ∥ c ′ ′ ( s ( t ) ) ∥ = ∥ c ′ ( t ) ∥ 4 ∥ c ′ ( t ) × ( c ′ ′ ( t ) × c ′ ( t ) ) ∥ = ∥ c ′ ( t ) ∥ 3 ∥ c ′ ( t ) × c ′ ′ ( t ) ∥
以下推导 非弧长参数化下 的挠率公式,即 c = c ( t ) \boldsymbol c = \boldsymbol c(t) c = c ( t )
曲率与平面曲线一致,即
κ ( t ) = ∥ c ′ ( t ) × c ′ ′ ( t ) ∥ ∥ c ′ ( t ) ∥ 3 \kappa(t) = \frac{\|\boldsymbol c'(t) \times \boldsymbol c''(t)\|}{\|\boldsymbol c'(t)\|^3}
κ ( t ) = ∥ c ′ ( t ) ∥ 3 ∥ c ′ ( t ) × c ′ ′ ( t ) ∥
对于挠率,需先计算 n , b , n ′ \boldsymbol n, \boldsymbol b, \boldsymbol n' n , b , n ′
首先由曲率推导过程中可知
c ′ ( s ) = c ′ ( t ) ∥ c ′ ( t ) ∥ , c ′ ′ ( s ) = c ′ ( t ) × ( c ′ ′ ( t ) × c ′ ( t ) ) ∥ c ′ ( t ) ∥ 4 \boldsymbol c'(s) = \frac{\boldsymbol c'(t)}{\|\boldsymbol c'(t)\|},\quad \boldsymbol c''(s) = \frac{\boldsymbol c'(t) \times (\boldsymbol c''(t) \times \boldsymbol c'(t))}{\|\boldsymbol c'(t)\|^4}
c ′ ( s ) = ∥ c ′ ( t ) ∥ c ′ ( t ) , c ′ ′ ( s ) = ∥ c ′ ( t ) ∥ 4 c ′ ( t ) × ( c ′ ′ ( t ) × c ′ ( t ) )
所以
n ( s ) = c ′ ′ ( s ) ∥ c ′ ′ ( s ) ∥ = c ′ ( t ) × ( c ′ ′ ( t ) × c ′ ( t ) ) ∥ c ′ ( t ) × ( c ′ ′ ( t ) × c ′ ( t ) ) ∥ \boldsymbol n(s) = \frac{\boldsymbol c''(s)}{\|\boldsymbol c''(s)\|}
= \frac{\boldsymbol c'(t) \times (\boldsymbol c''(t) \times \boldsymbol c'(t))}{\|\boldsymbol c'(t) \times (\boldsymbol c''(t) \times \boldsymbol c'(t))\|}
n ( s ) = ∥ c ′ ′ ( s ) ∥ c ′ ′ ( s ) = ∥ c ′ ( t ) × ( c ′ ′ ( t ) × c ′ ( t ) ) ∥ c ′ ( t ) × ( c ′ ′ ( t ) × c ′ ( t ) )
b ( s ) = c ′ ( s ) × n ( s ) = c ′ ( t ) × { c ′ ( t ) × ( c ′ ′ ( t ) × c ′ ( t ) ) } ∥ c ′ ( t ) ∥ 2 ⋅ ∥ c ′ ( t ) × ( c ′ ′ ( t ) × c ′ ( t ) ) ∥ \boldsymbol b(s) = \boldsymbol c'(s) \times \boldsymbol n(s)
= \frac{\boldsymbol c'(t) \times \{\boldsymbol c'(t) \times (\boldsymbol c''(t) \times \boldsymbol c'(t))\}}{\|\boldsymbol c'(t)\|^2 \cdot \|\boldsymbol c'(t) \times (\boldsymbol c''(t) \times \boldsymbol c'(t))\|}
b ( s ) = c ′ ( s ) × n ( s ) = ∥ c ′ ( t ) ∥ 2 ⋅ ∥ c ′ ( t ) × ( c ′ ′ ( t ) × c ′ ( t ) ) ∥ c ′ ( t ) × { c ′ ( t ) × ( c ′ ′ ( t ) × c ′ ( t ) ) }
n ′ ( s ) = d n d t ( t ) ⋅ d t d s = d d t N ∥ N ∥ ⋅ 1 ∥ c ′ ( t ) ∥ ( N : = c ′ ( t ) × ( c ′ ′ ( t ) × c ′ ( t ) ) ) = ∥ N ∥ 2 ⋅ N ′ − ( N ⋅ N ′ ) ⋅ N ∥ N ∥ 3 ⋅ ∥ c ′ ( t ) ∥ = N × ( N ′ × N ) ∥ N ∥ 3 ⋅ ∥ c ′ ( t ) ∥ \begin{aligned}
\boldsymbol n'(s)
&= \frac{d\boldsymbol n}{dt}(t) \cdot \frac{dt}{ds} \\
&= \frac{d}{dt} \frac{N}{\|N\|} \cdot \frac{1}{\|\boldsymbol c'(t)\|} \quad (N := \boldsymbol c'(t) \times (\boldsymbol c''(t) \times \boldsymbol c'(t))) \\
&= \frac{\|N\|^2 \cdot N' - (N \cdot N') \cdot N}{\|N\|^3 \cdot \|\boldsymbol c'(t)\|} \\
&= \frac{N \times (N' \times N)}{\|N\|^3 \cdot \|\boldsymbol c'(t)\|}
\end{aligned} n ′ ( s ) = d t d n ( t ) ⋅ d s d t = d t d ∥ N ∥ N ⋅ ∥ c ′ ( t ) ∥ 1 ( N : = c ′ ( t ) × ( c ′ ′ ( t ) × c ′ ( t ) ) ) = ∥ N ∥ 3 ⋅ ∥ c ′ ( t ) ∥ ∥ N ∥ 2 ⋅ N ′ − ( N ⋅ N ′ ) ⋅ N = ∥ N ∥ 3 ⋅ ∥ c ′ ( t ) ∥ N × ( N ′ × N )
因此
τ ( t ) = n ′ ( s ( t ) ) ⋅ b ( s ( t ) ) = [ N × ( N ′ × N ) ] ⋅ [ c ′ ( t ) × { c ′ ( t ) × ( c ′ ′ ( t ) × c ′ ( t ) ) } ] ∥ N ∥ 4 ⋅ ∥ c ′ ( t ) ∥ 3 = 1 ∥ N ∥ 4 ⋅ ∥ c ′ ( t ) ∥ 2 ⋅ { N × ( N ′ × N ) } ⋅ ( c ′ ( t ) × N ) = ( N ⋅ c ′ ( t ) ) { N × ( N ′ × N ) } − { c ′ ( t ) ⋅ ( N ′ × N ) } ⋅ N 2 ∥ N ∥ 4 ⋅ ∥ c ′ ( t ) ∥ 2 = c ′ ( t ) ⋅ ( N ′ × N ) ∥ N ∥ 2 ⋅ ∥ c ′ ( t ) ∥ 2 (因为 N ⋅ c ′ ( t ) = 0 ) = N ′ ⋅ ( c ′ ( t ) × N ) ∥ c ′ ( t ) ∥ 4 ⋅ ∥ c ′ ′ ( t ) × c ′ ( t ) ∥ 2 \begin{aligned}
\tau(t) &= \boldsymbol n'(s(t)) \cdot \boldsymbol b(s(t)) \\
&= \frac{[N \times (N' \times N)] \cdot [\boldsymbol c'(t) \times \{\boldsymbol c'(t) \times (\boldsymbol c''(t) \times \boldsymbol c'(t))\}]}{\|N\|^4 \cdot \|\boldsymbol c'(t)\|^3} \\
&= \frac{1}{\|N\|^4 \cdot \|\boldsymbol c'(t)\|^2} \cdot \{N \times (N' \times N)\} \cdot (\boldsymbol c'(t) \times N) \\
&= \frac{(N \cdot \boldsymbol c'(t)) \{N \times (N' \times N)\} - \{\boldsymbol c'(t) \cdot(N' \times N)\} \cdot N^2}{\|N\|^4 \cdot \|\boldsymbol c'(t)\|^2} \\
&= \frac{\boldsymbol c'(t) \cdot (N' \times N)}{\|N\|^2 \cdot \|\boldsymbol c'(t)\|^2} \quad \text{(因为 $N \cdot \boldsymbol c'(t) = 0$)} \\
&= \frac{N' \cdot (\boldsymbol c'(t) \times N)}{\|\boldsymbol c'(t)\|^4 \cdot \|\boldsymbol c''(t) \times \boldsymbol c'(t)\|^2} \\
\end{aligned} τ ( t ) = n ′ ( s ( t ) ) ⋅ b ( s ( t ) ) = ∥ N ∥ 4 ⋅ ∥ c ′ ( t ) ∥ 3 [ N × ( N ′ × N ) ] ⋅ [ c ′ ( t ) × { c ′ ( t ) × ( c ′ ′ ( t ) × c ′ ( t ) ) } ] = ∥ N ∥ 4 ⋅ ∥ c ′ ( t ) ∥ 2 1 ⋅ { N × ( N ′ × N ) } ⋅ ( c ′ ( t ) × N ) = ∥ N ∥ 4 ⋅ ∥ c ′ ( t ) ∥ 2 ( N ⋅ c ′ ( t ) ) { N × ( N ′ × N ) } − { c ′ ( t ) ⋅ ( N ′ × N ) } ⋅ N 2 = ∥ N ∥ 2 ⋅ ∥ c ′ ( t ) ∥ 2 c ′ ( t ) ⋅ ( N ′ × N ) (因为 N ⋅ c ′ ( t ) = 0 ) = ∥ c ′ ( t ) ∥ 4 ⋅ ∥ c ′ ′ ( t ) × c ′ ( t ) ∥ 2 N ′ ⋅ ( c ′ ( t ) × N )
分子部分
N ′ = c ′ ′ × ( c ′ ′ × c ′ ) + c ′ × ( c ′ ′ ′ × c ′ + c ′ ′ × c ′ ′ ⏟ 0 ) = − ( c ′ ′ ( t ) ⋅ c ′ ′ ( t ) + c ′ ( t ) ⋅ c ′ ′ ′ ( t ) ) ⏟ 第一分量 c ′ ( t ) + ( c ′ ′ ( t ) ⋅ c ′ ( t ) ) ⏟ 第二分量 c ′ ′ ( t ) + ( c ′ ( t ) ⋅ c ′ ( t ) ) ⏟ 第三分量 c ′ ′ ′ ( t ) c ′ ( t ) × N = c ′ ( t ) × [ c ′ ( t ) × ( c ′ ′ ( t ) × c ′ ( t ) ) ] = c ′ ( t ) × { ( c ′ ( t ) ⋅ c ′ ( t ) ) c ′ ′ ( t ) − ( c ′ ( t ) ⋅ c ′ ′ ( t ) ) c ′ ( t ) } = ( c ′ ( t ) ⋅ c ′ ( t ) ) ⏟ 分量 ( c ′ ( t ) × c ′ ′ ( t ) ) \begin{aligned}
N' &= \boldsymbol c'' \times (\boldsymbol c'' \times \boldsymbol c') + \boldsymbol c' \times (\boldsymbol c''' \times \boldsymbol c' + \underbrace{\boldsymbol c'' \times \boldsymbol c''}_{0}) \\
&= \underbrace{-(\boldsymbol c''(t) \cdot \boldsymbol c''(t) + \boldsymbol c'(t) \cdot \boldsymbol c'''(t))}_{\text{第一分量}} \boldsymbol c'(t) + \underbrace{(\boldsymbol c''(t) \cdot \boldsymbol c'(t))}_{\text{第二分量}} \boldsymbol c''(t) + \underbrace{(\boldsymbol c'(t) \cdot \boldsymbol c'(t))}_{\text{第三分量}} \boldsymbol c'''(t) \\
\boldsymbol c'(t) \times N &= \boldsymbol c'(t) \times [\boldsymbol c'(t) \times (\boldsymbol c''(t) \times \boldsymbol c'(t))] \\
&= \boldsymbol c'(t) \times \{(\boldsymbol c'(t) \cdot \boldsymbol c'(t)) \boldsymbol c''(t) - (\boldsymbol c'(t) \cdot \boldsymbol c''(t)) \boldsymbol c'(t)\} \\
&= \underbrace{(\boldsymbol c'(t) \cdot \boldsymbol c'(t))}_{\text{分量}} (\boldsymbol c'(t) \times \boldsymbol c''(t))
\end{aligned} N ′ c ′ ( t ) × N = c ′ ′ × ( c ′ ′ × c ′ ) + c ′ × ( c ′ ′ ′ × c ′ + 0 c ′ ′ × c ′ ′ ) = 第一分量 − ( c ′ ′ ( t ) ⋅ c ′ ′ ( t ) + c ′ ( t ) ⋅ c ′ ′ ′ ( t ) ) c ′ ( t ) + 第二分量 ( c ′ ′ ( t ) ⋅ c ′ ( t ) ) c ′ ′ ( t ) + 第三分量 ( c ′ ( t ) ⋅ c ′ ( t ) ) c ′ ′ ′ ( t ) = c ′ ( t ) × [ c ′ ( t ) × ( c ′ ′ ( t ) × c ′ ( t ) ) ] = c ′ ( t ) × { ( c ′ ( t ) ⋅ c ′ ( t ) ) c ′ ′ ( t ) − ( c ′ ( t ) ⋅ c ′ ′ ( t ) ) c ′ ( t ) } = 分量 ( c ′ ( t ) ⋅ c ′ ( t ) ) ( c ′ ( t ) × c ′ ′ ( t ) )
所以二者做内积时,仅 c ′ ′ ′ ( t ) \boldsymbol c'''(t) c ′ ′ ′ ( t ) 项有贡献,由标量三重积得到
N ′ ⋅ ( c ′ ( t ) × N ) = ∥ c ′ ( t ) ∥ 4 c ′ ′ ′ ( t ) ⋅ ( c ′ ( t ) × c ′ ′ ( t ) ) = ∥ c ′ ( t ) ∥ 4 det ( c ′ ( t ) , c ′ ′ ( t ) , c ′ ′ ′ ( t ) ) N' \cdot (\boldsymbol c'(t) \times N) = \|\boldsymbol c'(t)\|^4 \boldsymbol c'''(t) \cdot (\boldsymbol c'(t) \times \boldsymbol c''(t))
= \|\boldsymbol c'(t)\|^4 \det(\boldsymbol c'(t), \boldsymbol c''(t), \boldsymbol c'''(t))
N ′ ⋅ ( c ′ ( t ) × N ) = ∥ c ′ ( t ) ∥ 4 c ′ ′ ′ ( t ) ⋅ ( c ′ ( t ) × c ′ ′ ( t ) ) = ∥ c ′ ( t ) ∥ 4 det ( c ′ ( t ) , c ′ ′ ( t ) , c ′ ′ ′ ( t ) )
带回得到
τ ( t ) = det ( c ′ ( t ) , c ′ ′ ( t ) , c ′ ′ ′ ( t ) ) ∥ c ′ ( t ) × c ′ ′ ( t ) ∥ 2 \tau(t) = \frac{\det(\boldsymbol c'(t), \boldsymbol c''(t), \boldsymbol c'''(t))}{\|\boldsymbol c'(t) \times \boldsymbol c''(t)\|^2}
τ ( t ) = ∥ c ′ ( t ) × c ′ ′ ( t ) ∥ 2 det ( c ′ ( t ) , c ′ ′ ( t ) , c ′ ′ ′ ( t ) )
结论:对于一般曲线 c ( t ) : I → R 3 \boldsymbol c(t): I \to \mathbb R^3 c ( t ) : I → R 3 ,
κ ( t ) = ∥ c ′ ( t ) × c ′ ′ ( t ) ∥ ∥ c ′ ( t ) ∥ 3 , τ ( t ) = det ( c ′ ( t ) , c ′ ′ ( t ) , c ′ ′ ′ ( t ) ) ∥ c ′ ( t ) × c ′ ′ ( t ) ∥ 2 \kappa(t) = \frac{\|\boldsymbol c'(t) \times \boldsymbol c''(t)\|}{\|\boldsymbol c'(t)\|^3}, \quad
\tau(t) = \frac{\det(\boldsymbol c'(t), \boldsymbol c''(t), \boldsymbol c'''(t))}{\|\boldsymbol c'(t) \times \boldsymbol c''(t)\|^2} κ ( t ) = ∥ c ′ ( t ) ∥ 3 ∥ c ′ ( t ) × c ′ ′ ( t ) ∥ , τ ( t ) = ∥ c ′ ( t ) × c ′ ′ ( t ) ∥ 2 det ( c ′ ( t ) , c ′ ′ ( t ) , c ′ ′ ′ ( t ) )
# 刚体变换下的曲率不变性
给定正交矩阵 A ∈ O ( 3 ) A \in O(3) A ∈ O ( 3 ) 和向量 b ∈ R 3 \boldsymbol b \in \mathbb R^3 b ∈ R 3 ,定义映射 T : R 3 → R 3 T: \mathbb R^3 \to \mathbb R^3 T : R 3 → R 3 为
T ( x ) = A x + b T(\boldsymbol x) = A\boldsymbol x + \boldsymbol b
T ( x ) = A x + b
称 T T T 为 R 3 \mathbb R^3 R 3 上的 刚体变换 (Rigid Transformation)「合同変換」 。
当 ∣ A ∣ = 1 |A| = 1 ∣ A ∣ = 1 时,称 T T T 为 正刚体变换
当 ∣ A ∣ = − 1 |A| = -1 ∣ A ∣ = − 1 时,称 T T T 为 反刚体变换
对于刚体变换 T T T ,容易证明以下结论
∥ T ( x ) − T ( y ) ∥ = ∥ A x + b − ( A y + b ) ∥ = ∥ A ( x − y ) ∥ = ( x − y ) T A T A ( x − y ) = ∥ x − y ∥ \begin{aligned}
\|T(\boldsymbol x) - T(\boldsymbol y)\| &= \|A\boldsymbol x + \boldsymbol b - (A\boldsymbol y + \boldsymbol b)\| \\
&= \|A(\boldsymbol x - \boldsymbol y)\| \\
&= \sqrt{(\boldsymbol x - \boldsymbol y)^T A^T A (\boldsymbol x - \boldsymbol y)} \\
&= \|\boldsymbol x - \boldsymbol y\|
\end{aligned} ∥ T ( x ) − T ( y ) ∥ = ∥ A x + b − ( A y + b ) ∥ = ∥ A ( x − y ) ∥ = ( x − y ) T A T A ( x − y ) = ∥ x − y ∥
这意味着刚体变换保持了 R 3 \mathbb R^3 R 3 中任意两点之间的距离不变,因此也保持了曲线的形状不变,在这个理论基础上
设 c : I → R 3 \boldsymbol c: I \to \mathbb R^3 c : I → R 3 为弧长参数化下的曲线,其曲率,挠率为 κ ( s ) , τ ( s ) \kappa(s), \tau(s) κ ( s ) , τ ( s )
设 c ~ : I → R 3 \widetilde{\boldsymbol c}: I \to \mathbb R^3 c : I → R 3 为 T ∘ c T \circ \boldsymbol c T ∘ c ,即 c ~ ( s ) = A c ( s ) + b \widetilde{\boldsymbol c}(s) = A\boldsymbol c(s) + \boldsymbol b c ( s ) = A c ( s ) + b 刚体变换下的曲线,曲率,挠率为 κ ~ ( s ) , τ ~ ( s ) \widetilde \kappa(s), \widetilde \tau(s) κ ( s ) , τ ( s )
对 c ~ \widetilde{\boldsymbol c} c 进行微分,得到
c ~ ′ ( s ) = A c ′ ( s ) c ~ ′ ′ ( s ) = A c ′ ′ ( s ) c ~ ′ ′ ′ ( s ) = A c ′ ′ ′ ( s ) \begin{aligned}
\widetilde{\boldsymbol c}'(s) &= A\boldsymbol c'(s) \\
\widetilde{\boldsymbol c}''(s) &= A\boldsymbol c''(s) \\
\widetilde{\boldsymbol c}'''(s) &= A\boldsymbol c'''(s)
\end{aligned} c ′ ( s ) c ′ ′ ( s ) c ′ ′ ′ ( s ) = A c ′ ( s ) = A c ′ ′ ( s ) = A c ′ ′ ′ ( s )
因此代入曲率和挠率的计算,得到
κ ~ ( s ) = ∥ c ~ ′ ( s ) × c ~ ′ ′ ( s ) ∥ ∥ c ~ ′ ( s ) ∥ 3 = ∥ A c ′ ( s ) × A c ′ ′ ( s ) ∥ ∥ A c ′ ( s ) ∥ 3 = ∥ A ( c ′ ( s ) × c ′ ′ ( s ) ) ∥ ∥ A c ′ ( s ) ∥ 3 = κ ( s ) τ ~ ( s ) = det ( c ~ ′ ( s ) , c ~ ′ ′ ( s ) , c ~ ′ ′ ′ ( s ) ) ∥ c ~ ′ ( s ) × c ~ ′ ′ ( s ) ∥ 2 = det ( A c ′ ( s ) , A c ′ ′ ( s ) , A c ′ ′ ′ ( s ) ) ∥ A ( c ′ ( s ) × c ′ ′ ( s ) ) ∥ 2 = ∣ A ∣ ⋅ det ( c ′ ( s ) , c ′ ′ ( s ) , c ′ ′ ′ ( s ) ) ∥ c ′ ( s ) × c ′ ′ ( s ) ∥ 2 = ∣ A ∣ ⋅ τ ( s ) \begin{aligned}
\widetilde \kappa(s) &= \frac{\|\widetilde{\boldsymbol c}'(s) \times \widetilde{\boldsymbol c}''(s)\|}{\|\widetilde{\boldsymbol c}'(s)\|^3} = \frac{\|A\boldsymbol c'(s) \times A\boldsymbol c''(s)\|}{\|A\boldsymbol c'(s)\|^3} = \frac{\|A(\boldsymbol c'(s) \times \boldsymbol c''(s))\|}{\|A\boldsymbol c'(s)\|^3} = \kappa(s) \\
\widetilde \tau(s) &= \frac{\det(\widetilde{\boldsymbol c}'(s), \widetilde{\boldsymbol c}''(s), \widetilde{\boldsymbol c}'''(s))}{\|\widetilde{\boldsymbol c}'(s) \times \widetilde{\boldsymbol c}''(s)\|^2} = \frac{\det(A\boldsymbol c'(s), A\boldsymbol c''(s), A\boldsymbol c'''(s))}{\|A(\boldsymbol c'(s) \times \boldsymbol c''(s))\|^2} = \frac{|A| \cdot \det(\boldsymbol c'(s), \boldsymbol c''(s), \boldsymbol c'''(s))}{\|\boldsymbol c'(s) \times \boldsymbol c''(s)\|^2} = |A| \cdot \tau(s)
\end{aligned} κ ( s ) τ ( s ) = ∥ c ′ ( s ) ∥ 3 ∥ c ′ ( s ) × c ′ ′ ( s ) ∥ = ∥ A c ′ ( s ) ∥ 3 ∥ A c ′ ( s ) × A c ′ ′ ( s ) ∥ = ∥ A c ′ ( s ) ∥ 3 ∥ A ( c ′ ( s ) × c ′ ′ ( s ) ) ∥ = κ ( s ) = ∥ c ′ ( s ) × c ′ ′ ( s ) ∥ 2 det ( c ′ ( s ) , c ′ ′ ( s ) , c ′ ′ ′ ( s ) ) = ∥ A ( c ′ ( s ) × c ′ ′ ( s ) ) ∥ 2 det ( A c ′ ( s ) , A c ′ ′ ( s ) , A c ′ ′ ′ ( s ) ) = ∥ c ′ ( s ) × c ′ ′ ( s ) ∥ 2 ∣ A ∣ ⋅ det ( c ′ ( s ) , c ′ ′ ( s ) , c ′ ′ ′ ( s ) ) = ∣ A ∣ ⋅ τ ( s )
这表明曲率 κ \kappa κ 在刚体变换下保持不变,而挠率 τ \tau τ 的符号可能会发生改变,具体取决于变换是正刚体变换还是反刚体变换。
同时也等价于:给定曲率和挠率,可以在刚体变换下唯一确定曲线,该结论称为 曲线论基本定理 (Fundamental Theorem of Curves)「曲線論の基本定理」 。