曲率是微分几何研究的中心内容
以下令曲线 c:IRn\boldsymbol c: I \to \mathbb R^n弧长参数化下的正则曲线

# 曲率

众所周知,一阶微分评价曲线的变化速度,通过已知曲线在任意一点的速度即可确定出曲线的路径,这使得一阶微分具有无可比拟的意义。在物理意义上等价于速度向量
称曲线的一阶微分 c(s)\boldsymbol c'(s) 为曲线的 单位切向量场 (Unit Tangent Vector Field)「単位接ベクトル場」,记作

t(s):=c(s)\boldsymbol t(s) := \boldsymbol c'(s)

但是实际上仅有一阶微分是不够的,因为微分的过程会使得常数项消失,曲线发生偏移。因此需要切向量场 t\boldsymbol t 的标杆,需要一个能时刻指示出曲线在沿着非速度方向上的偏移量。从物理的角度考虑,这一节路径正是惯性主导的运动量。为此需要对速度微分获得加速度向量
由于 c\boldsymbol c 是弧长参数化下的曲线,这使得速度 t(s)\boldsymbol t(s) 始终为单位向量,我们希望这个美好的性质能传递下去,所以进行归一化。定义

n1(s):=t(s)t(s)\boldsymbol n_1(s) := \frac{\boldsymbol t'(s)}{\|\boldsymbol t'(s)\|}

n1(s)\boldsymbol n_1(s) 为曲线 c\boldsymbol c11 法向量场 (First Normal Vector Field)「第 11 法線ベクトル場」
在这个过程中,t\boldsymbol t' 的模长为了实现归一化被除去,但是它本身的数值直接指示了曲线的弯曲速度,定义

κ1(s):=t(s)\kappa_1(s) := \|\boldsymbol t'(s)\|

κ1(s)\kappa_1(s) 为曲线 c\boldsymbol c11 曲率 (First Curvature)「第 11 曲率」

定义

O1(s):=Span{t(s),n1(s)}:={λ1t(s)+λ2n1(s)λ1,λ2R}\mathcal O_1(s) := \mathrm{Span}\{\boldsymbol t(s), \boldsymbol n_1(s)\} := \{\lambda_1 \boldsymbol t(s) + \lambda_2 \boldsymbol n_1(s) \mid \lambda_1, \lambda_2 \in \mathbb R\}

为曲线 c\boldsymbol c 在点 c(s)\boldsymbol c(s) 处的 第一接触空间 (First Osculating Space)「第 11 接触空間」

命题
A1:={t(s),n1(s)}\mathscr A_1 := \{\boldsymbol t(s), \boldsymbol n_1(s)\} 构成 O1(s)\mathcal O_1(s) 的正交归一基底

证明

只需要证明二者正交。注意 t(s)=1\|\boldsymbol t(s)\| = 1,对任意 ss 成立。对两边进行求导得到

0=dds1=dds(t(s)t(s))=2t(s)t(s)\begin{aligned} 0 = \frac{d}{ds} 1 &= \frac{d}{ds} (\boldsymbol t(s) \cdot \boldsymbol t(s)) \\ &= 2 \boldsymbol t'(s) \cdot \boldsymbol t(s) \end{aligned}

因此 t(s)t(s)=0\boldsymbol t'(s) \cdot \boldsymbol t(s) = 0,即

n1(s)t(s)=κ1(s)1t(s)t(s)=0\boldsymbol n_1(s) \cdot \boldsymbol t(s) = \kappa_1(s)^{-1} \boldsymbol t'(s) \cdot \boldsymbol t(s) = 0

\square

O1(s)\mathcal O_1(s) 成为 Rn\mathbb R^n 中的一个二维子空间,但是显而易见的是,曲线 c\boldsymbol c 的运动不会局限于二维。虽然构建出了一个速度向量,以及 O1(s)\boldsymbol O_1(s) 中对应的法向量,但是曲线在更高维空间中的偏移并没有被描述出来
于是,对上述过程进行推广,这次对第一法向量场进行微分分析。可以拆解为处于 O1(s)\mathcal O_1(s) 中的分量与垂直于 O1(s)\mathcal O_1(s) 的分量

n1(s)=α(s)t(s)+β(s)n1(s)First Osculating Space+w(s),α(s),β(s)R, w(s)O1(s)\boldsymbol n_1'(s) = \underbrace{\alpha(s) \boldsymbol t(s) + \beta(s) \boldsymbol n_1(s)}_{\text{First Osculating Space}} + \boldsymbol w(s) ,\quad \alpha(s),\beta(s) \in \mathbb R,\ \boldsymbol w(s) \in \mathcal O_1(s)^\perp

对原先未能给出的维度进行描述,定义归一化的补偿向量为曲线 c\boldsymbol c22 法向量场 (Second Normal Vector Field)「第 22 法線ベクトル場」

n2(s):=w(s)w(s)\boldsymbol n_2(s) := \frac{\boldsymbol w(s)}{\|\boldsymbol w(s)\|}

称被移除的模长

κ2(s):=w(s)\kappa_2(s) := \|\boldsymbol w(s)\|

为曲线 c\boldsymbol c22 曲率 (Second Curvature)「第 22 曲率」

尝试通过内积解出其他分量

α(s)=n1(s)t(s)=n1(s)t(s)dds(n1t)=0=κ1(s)n1(s)n1(s)=κ1(s)β(s)=n1(s)n1(s)=12dds(n1(s)n1(s))=0\begin{aligned} \alpha(s) &= \boldsymbol n_1'(s) \cdot \boldsymbol t(s) \\ &= \underbrace{-\boldsymbol n_1(s) \cdot \boldsymbol t'(s)}_{\frac{d}{ds}(\boldsymbol n_1 \cdot \boldsymbol t) = 0} \\ &= -\kappa_1(s) \boldsymbol n_1(s) \cdot \boldsymbol n_1(s) = -\kappa_1(s) \\ \beta(s) &= \boldsymbol n_1'(s) \cdot \boldsymbol n_1(s) = \frac{1}{2} \frac{d}{ds} (\boldsymbol n_1(s) \cdot \boldsymbol n_1(s)) = 0 \end{aligned}

那么,微分可以写为

n1(s)=κ1(s)t(s)+κ2(s)n2(s)\boldsymbol n_1'(s) = -\kappa_1(s) \boldsymbol t(s) + \kappa_2(s) \boldsymbol n_2(s)

因此可以评估的范围得到了扩张,定义曲线的 第二接触空间 (Second Osculating Space)「第 22 接触空間」

O2(s):=Span{t(s),n1(s),n2(s)}\mathcal O_2(s) := \mathrm{Span}\{\boldsymbol t(s), \boldsymbol n_1(s), \boldsymbol n_2(s)\}

命题
A2:={t(s),n1(s),n2(s)}\mathscr A_2 := \{\boldsymbol t(s), \boldsymbol n_1(s), \boldsymbol n_2(s)\} 构成 O2(s):=Span{t(s),n1(s),n2(s)}\mathcal O_2(s) := \mathrm{Span}\{\boldsymbol t(s), \boldsymbol n_1(s), \boldsymbol n_2(s)\} 的正交归一基底

证明

由于 n2(s)O1(s)\boldsymbol n_2(s) \in \mathcal O_1(s)^\perp,所以与 t(s),n1(s)\boldsymbol t(s), \boldsymbol n_1(s) 正交,并且自身已经为单位向量

\square

同样地,对第二法向量场进行微分,得到

n2(s)=γ1(s)t(s)+γ2(s)n1(s)+γ3(s)n2(s)Second Osculating Space+z(s),γ1(s),γ2(s),γ3(s)R, z(s)O2(s)\boldsymbol n_2'(s) = \underbrace{\gamma_1(s) \boldsymbol t(s) + \gamma_2(s) \boldsymbol n_1(s) + \gamma_3(s) \boldsymbol n_2(s)}_{\text{Second Osculating Space}} + \boldsymbol z(s), \quad \gamma_1(s),\gamma_2(s),\gamma_3(s) \in \mathbb R,\ \boldsymbol z(s) \in \mathcal O_2(s)^\perp

定义曲线 c\boldsymbol c33 法向量场 (Third Normal Vector Field)「第 33 法線ベクトル場」

n3(s):=z(s)z(s)\boldsymbol n_3(s) := \frac{\boldsymbol z(s)}{\|\boldsymbol z(s)\|}

定义曲线 c\boldsymbol c33 曲率 (Third Curvature)「第 33 曲率」

κ3(s):=z(s)\kappa_3(s) := \|\boldsymbol z(s)\|

求解分量:

γ1(s)=n2(s)t(s)=n2(s)t(s)=κ1(s)n2(s)n1(s)=0γ2(s)=n2(s)n1(s)=n2(s)n1(s)=κ2(s)n2(s)n2(s)=κ2(s)γ3(s)=n2(s)n2(s)=12dds(n2(s)n2(s))=0\begin{aligned} \gamma_1(s) &= \boldsymbol n_2'(s) \cdot \boldsymbol t(s) = -\boldsymbol n_2(s) \cdot \boldsymbol t'(s) = -\kappa_1(s) \boldsymbol n_2(s) \cdot \boldsymbol n_1(s) = 0 \\ \gamma_2(s) &= \boldsymbol n_2'(s) \cdot \boldsymbol n_1(s) = -\boldsymbol n_2(s) \cdot \boldsymbol n_1'(s) = -\kappa_2(s) \boldsymbol n_2(s) \cdot \boldsymbol n_2(s) = -\kappa_2(s) \\ \gamma_3(s) &= \boldsymbol n_2'(s) \cdot \boldsymbol n_2(s) = \frac{1}{2} \frac{d}{ds} (\boldsymbol n_2(s) \cdot \boldsymbol n_2(s)) = 0 \end{aligned}

那么改写微分为

n2(s)=κ2(s)n1(s)+κ3(s)n3(s)\boldsymbol n_2'(s) = -\kappa_2(s) \boldsymbol n_1(s) + \kappa_3(s) \boldsymbol n_3(s)

构造出曲线的 第三接触空间 (Third Osculating Space)「第 33 接触空間」

O3(s):=Span{t(s),n1(s),n2(s),n3(s)}\mathcal O_3(s) := \mathrm{Span}\{\boldsymbol t(s), \boldsymbol n_1(s), \boldsymbol n_2(s), \boldsymbol n_3(s)\}

以此类推,可以得到

ni(s)=κi(s)ni1(s)+κi+1(s)ni+1(s)\boldsymbol n_i'(s) = -\kappa_i(s) \boldsymbol n_{i-1}(s) + \kappa_{i+1}(s) \boldsymbol n_{i+1}(s)

将上述结果汇总,可以得到曲线的 Frenet-Serret 公式:

{t(s)=κ1(s)n1(s)n1(s)=κ1(s)t(s)+κ2(s)n2(s)n2(s)=κ2(s)n1(s)+κ3(s)n3(s)nn2(s)=κn2(s)nn3(s)+κn1(s)nn1(s)nn1(s)=κn1(s)nn2(s)\begin{cases} \boldsymbol t'(s) = \kappa_1(s) \boldsymbol n_1(s) \\ \boldsymbol n_1'(s) = -\kappa_1(s) \boldsymbol t(s) + \kappa_2(s) \boldsymbol n_2(s) \\ \boldsymbol n_2'(s) = -\kappa_2(s) \boldsymbol n_1(s) + \kappa_3(s) \boldsymbol n_3(s) \\ \vdots \\ \boldsymbol n_{n-2}'(s) = -\kappa_{n-2}(s) \boldsymbol n_{n-3}(s) + \kappa_{n-1}(s) \boldsymbol n_{n-1}(s) \\ \boldsymbol n_{n-1}'(s) = -\kappa_{n-1}(s) \boldsymbol n_{n-2}(s) \end{cases}

至此,A:={t(s),n1(s),,nn1(s)}\mathscr A := \{\boldsymbol t(s), \boldsymbol n_1(s), \ldots, \boldsymbol n_{n-1}(s)\} 构成了 Rn\mathbb R^n 的正交归一基底,特别称为 Frenet 标架 (Frenet Frame)「フレネ枠」
曲线 c\boldsymbol c 在任意点处的运动均可通过该基底进行描述

# 空间曲线与平面曲线

实际问题中,最常见的曲线为平面曲线与空间曲线,此时不需要将曲率和法向量等概念推广至更高维空间。简单地:

  • 称第 11 曲率 κ1\kappa_1曲率 (curvature)「曲率」,记作 κ\kappa
  • 称第 22 曲率 κ2\kappa_2挠率 (torsion)「捩率」,记作 τ\tau
  • 称第 11 法向量场 n1\boldsymbol n_1主法向量 (Principal Normal Vector)「主法線ベクトル」,记作 n\boldsymbol n
  • 称第 22 法向量场 n2\boldsymbol n_2副法向量 (Binormal Vector)「副法線ベクトル」,记作 b\boldsymbol b

曲率本身的定义依赖于模长,这使得向量的方向被丢失,由于 t(s)\boldsymbol t'(s)c(s)\boldsymbol c'(s) 正交,说明 t(s)\boldsymbol t'(s) 一定在法向量方向上,即存在标量函数 κ~(s)\widetilde \kappa(s) 使得

t(s)=κ~(s)n(s)\boldsymbol t'(s) = \widetilde \kappa(s) \boldsymbol n(s)

称此处唯一确定的曲率 κ~(s)\widetilde \kappa(s) 称为 带向曲率,该曲率可能取正可能取负也可能为零,符号表示曲线弯曲的方向

  • 曲线为 向法向量 方向弯曲时,带向曲率为正
  • 曲线为 背离法向量 方向弯曲时,带向曲率为负

该符号的方向直接影响了主法向量场的方向,即

  • κ~(s)>0    {t(s),n(s)}\widetilde \kappa(s) \gt 0 \iff \{\boldsymbol t(s), \boldsymbol n(s)\} 构成右手系基底
  • κ~(s)<0    {t(s),n(s)}\widetilde \kappa(s) \lt 0 \iff \{\boldsymbol t(s), \boldsymbol n(s)\} 构成左手系基底

直观上,可以按照如下说明理解两个曲率的作用

  • 曲率 κ\kappa 控制曲线 “弯” 的程度
  • 挠率 τ\tau 控制曲线 “扭” 的速度

在维度 33 的简化下,Frenet-Serret 公式可以写为

{t(s)=κ(s)n(s)n(s)=κ(s)t(s)+τ(s)b(s)b(s)=τ(s)n(s)\begin{cases} \boldsymbol t'(s) = \kappa(s) \boldsymbol n(s) \\ \boldsymbol n'(s) = -\kappa(s) \boldsymbol t(s) + \tau(s) \boldsymbol b(s) \\ \boldsymbol b'(s) = -\tau(s) \boldsymbol n(s) \end{cases}

改写为矩阵形式得到

dds(t(s)n(s)b(s))=(0κ(s)0κ(s)0τ(s)0τ(s)0)(t(s)n(s)b(s))\frac{d}{ds} \begin{pmatrix} \boldsymbol t(s) \\ \boldsymbol n(s) \\ \boldsymbol b(s) \end{pmatrix} = \begin{pmatrix} 0 & \kappa(s) & 0 \\ -\kappa(s) & 0 & \tau(s) \\ 0 & -\tau(s) & 0 \end{pmatrix} \begin{pmatrix} \boldsymbol t(s) \\ \boldsymbol n(s) \\ \boldsymbol b(s) \end{pmatrix}

这实际上是一个线性微分方程组,只要已知系数矩阵就可以通过矩阵指数的方式求解

(t(s)n(s)b(s))=exp(s0s(0κ(u)0κ(u)0τ(u)0τ(u)0)du)(t(s0)n(s0)b(s0))\begin{pmatrix} \boldsymbol t(s) \\ \boldsymbol n(s) \\ \boldsymbol b(s) \end{pmatrix} = \exp\left(\int_{s_0}^s \begin{pmatrix} 0 & \kappa(u) & 0 \\ -\kappa(u) & 0 & \tau(u) \\ 0 & -\tau(u) & 0 \end{pmatrix} du\right) \begin{pmatrix} \boldsymbol t(s_0) \\ \boldsymbol n(s_0) \\ \boldsymbol b(s_0) \end{pmatrix}


更简化地,考虑平面曲线

在平面上通过曲率,可以刻画出曲率圆。
在曲率不为零时,称其倒数

ρ(s):=1κ(s)\rho(s) := \frac{1}{\kappa(s)} \quad

为曲线在点 c(s)\boldsymbol c(s) 处的 曲率半径

同时,令圆心

o(s):=c(s)+1κ~(s)n(s)\boldsymbol o(s) := \boldsymbol c(s) + \frac{1}{\widetilde \kappa(s)} \boldsymbol n(s)

那么,以 o(s)\boldsymbol o(s) 为圆心,ρ(s)\rho(s) 为半径的圆称为曲线在点 c(s)\boldsymbol c(s) 处的 曲率圆

C(θ)=o(s)+ρ(s)(cosθsinθ)\boldsymbol C(\theta) = \boldsymbol o(s) + \rho(s) \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}

通过曲率圆,可以直观地理解曲率的意义:在平面上曲率蕴含的信息等价于曲线蕴含的信息,即唯一确定曲率可以唯一确定曲线,让我们来尝试构造这一过程

设平面曲线 c(s)\boldsymbol c(s) 的带向曲率为 κ~(s)\widetilde \kappa(s)t(s)\boldsymbol t(s) 为其切向量场。因为 t(s)\boldsymbol t(s) 是单位向量,所以可以将其表示为

t(s)=(cosθ(s)sinθ(s)),t(s)=θ(s)(sinθ(s)cosθ(s))\boldsymbol t(s) = \begin{pmatrix} \cos \theta(s) \\ \sin \theta(s) \end{pmatrix},\quad \boldsymbol t'(s) = \theta'(s) \begin{pmatrix} -\sin \theta(s) \\ \cos \theta(s) \end{pmatrix}

曲率的定义给出其为系数,即

κ(s)=ddsθ(s)\kappa(s) = \frac{d}{ds} \theta(s)

两边积分,还原出 θ(s)\theta(s)

θ(s)=s0sκ(u)du+θ(s0)\theta(s) = \int_{s_0}^s \kappa(u) du + \theta(s_0)

这样一来就获得了切向量场 t(s)\boldsymbol t(s) 的表达式,进而两边积分可以得到曲线 c(s)\boldsymbol c(s) 的表达式

c(s)=(s0scos(s0uκ(v)dv+θ(s0))du+b1s0ssin(s0uκ(v)dv+θ(s0))du+b2)\boldsymbol c(s) = \begin{pmatrix} \displaystyle\int_{s_0}^s \cos \left(\int_{s_0}^u \kappa(v) dv + \theta(s_0)\right) du + b_1\\[12pt] \displaystyle\int_{s_0}^s \sin \left(\int_{s_0}^u \kappa(v) dv + \theta(s_0)\right) du + b_2 \end{pmatrix}

# 非弧长参数化下的曲率推导

上述定义中依赖于弧长参数化,以下推导 非弧长参数化下 的曲率公式,令曲线为一般空间曲线 c=c(t)\boldsymbol c = \boldsymbol c(t)

由弧长参数定义以及微积分基本定理,得到

s(t)=t0tc(u)du    dsdt=c(t)s(t) = \int_{t_0}^t \|\boldsymbol c'(u)| du \implies \frac{ds}{dt} = \|\boldsymbol c'(t)\|

ss 视作 tt 的函数,利用链式法则,得到

c(s)=dcds(s(t))=dcdt(t)dtds\boldsymbol c'(s) = \frac{d\boldsymbol c}{ds}(s(t)) = \frac{d\boldsymbol c}{dt}(t) \cdot \frac{dt}{ds}

进一步可以计算出二阶微分

c(s)=dds(c(t)dtds)=c(t)(dtds)2+c(t)d2tds2\boldsymbol c''(s) = \frac{d}{ds}\left(\boldsymbol c'(t) \cdot \frac{dt}{ds}\right) = \boldsymbol c''(t) \left(\frac{dt}{ds}\right)^2 + \boldsymbol c'(t) \cdot \frac{d^2 t}{ds^2}

dtds=1c(t)\frac{dt}{ds} = \frac{1}{\|\boldsymbol c'(t)\|} 代入上式

c(s)=c(t)2c(t)(c(t)c(t))c(t)c(t)4=(c(t)c(t))c(t)(c(t)c(t))c(t)c(t)4=c(t)×(c(t)×c(t))c(t)4\begin{aligned} \boldsymbol c''(s) &= \frac{\|\boldsymbol c'(t)\|^2 \boldsymbol c''(t) - (\boldsymbol c'(t) \cdot \boldsymbol c''(t)) \boldsymbol c'(t)}{\|\boldsymbol c'(t)\|^4} \\ &= \frac{(\boldsymbol c'(t) \cdot \boldsymbol c'(t)) \boldsymbol c''(t) - (\boldsymbol c'(t) \cdot \boldsymbol c''(t)) \boldsymbol c'(t)}{\|\boldsymbol c'(t)\|^4} \\ &= \frac{\boldsymbol c'(t) \times (\boldsymbol c''(t) \times \boldsymbol c'(t))}{\|\boldsymbol c'(t)\|^4} \end{aligned}

取模长得到曲率

κ(t)=c(s(t))=c(t)×(c(t)×c(t))c(t)4=c(t)×c(t)c(t)3\begin{aligned} \kappa(t) = \|\boldsymbol c''(s(t))\| &= \frac{\|\boldsymbol c'(t) \times (\boldsymbol c''(t) \times \boldsymbol c'(t))\|}{\|\boldsymbol c'(t)\|^4} \\ &= \frac{\|\boldsymbol c'(t) \times \boldsymbol c''(t)\|}{\|\boldsymbol c'(t)\|^3} \end{aligned}


以下推导 非弧长参数化下 的挠率公式,即 c=c(t)\boldsymbol c = \boldsymbol c(t)
曲率与平面曲线一致,即

κ(t)=c(t)×c(t)c(t)3\kappa(t) = \frac{\|\boldsymbol c'(t) \times \boldsymbol c''(t)\|}{\|\boldsymbol c'(t)\|^3}

对于挠率,需先计算 n,b,n\boldsymbol n, \boldsymbol b, \boldsymbol n'
首先由曲率推导过程中可知

c(s)=c(t)c(t),c(s)=c(t)×(c(t)×c(t))c(t)4\boldsymbol c'(s) = \frac{\boldsymbol c'(t)}{\|\boldsymbol c'(t)\|},\quad \boldsymbol c''(s) = \frac{\boldsymbol c'(t) \times (\boldsymbol c''(t) \times \boldsymbol c'(t))}{\|\boldsymbol c'(t)\|^4}

所以

n(s)=c(s)c(s)=c(t)×(c(t)×c(t))c(t)×(c(t)×c(t))\boldsymbol n(s) = \frac{\boldsymbol c''(s)}{\|\boldsymbol c''(s)\|} = \frac{\boldsymbol c'(t) \times (\boldsymbol c''(t) \times \boldsymbol c'(t))}{\|\boldsymbol c'(t) \times (\boldsymbol c''(t) \times \boldsymbol c'(t))\|}

b(s)=c(s)×n(s)=c(t)×{c(t)×(c(t)×c(t))}c(t)2c(t)×(c(t)×c(t))\boldsymbol b(s) = \boldsymbol c'(s) \times \boldsymbol n(s) = \frac{\boldsymbol c'(t) \times \{\boldsymbol c'(t) \times (\boldsymbol c''(t) \times \boldsymbol c'(t))\}}{\|\boldsymbol c'(t)\|^2 \cdot \|\boldsymbol c'(t) \times (\boldsymbol c''(t) \times \boldsymbol c'(t))\|}

n(s)=dndt(t)dtds=ddtNN1c(t)(N:=c(t)×(c(t)×c(t)))=N2N(NN)NN3c(t)=N×(N×N)N3c(t)\begin{aligned} \boldsymbol n'(s) &= \frac{d\boldsymbol n}{dt}(t) \cdot \frac{dt}{ds} \\ &= \frac{d}{dt} \frac{N}{\|N\|} \cdot \frac{1}{\|\boldsymbol c'(t)\|} \quad (N := \boldsymbol c'(t) \times (\boldsymbol c''(t) \times \boldsymbol c'(t))) \\ &= \frac{\|N\|^2 \cdot N' - (N \cdot N') \cdot N}{\|N\|^3 \cdot \|\boldsymbol c'(t)\|} \\ &= \frac{N \times (N' \times N)}{\|N\|^3 \cdot \|\boldsymbol c'(t)\|} \end{aligned}

因此

τ(t)=n(s(t))b(s(t))=[N×(N×N)][c(t)×{c(t)×(c(t)×c(t))}]N4c(t)3=1N4c(t)2{N×(N×N)}(c(t)×N)=(Nc(t)){N×(N×N)}{c(t)(N×N)}N2N4c(t)2=c(t)(N×N)N2c(t)2(因为 Nc(t)=0=N(c(t)×N)c(t)4c(t)×c(t)2\begin{aligned} \tau(t) &= \boldsymbol n'(s(t)) \cdot \boldsymbol b(s(t)) \\ &= \frac{[N \times (N' \times N)] \cdot [\boldsymbol c'(t) \times \{\boldsymbol c'(t) \times (\boldsymbol c''(t) \times \boldsymbol c'(t))\}]}{\|N\|^4 \cdot \|\boldsymbol c'(t)\|^3} \\ &= \frac{1}{\|N\|^4 \cdot \|\boldsymbol c'(t)\|^2} \cdot \{N \times (N' \times N)\} \cdot (\boldsymbol c'(t) \times N) \\ &= \frac{(N \cdot \boldsymbol c'(t)) \{N \times (N' \times N)\} - \{\boldsymbol c'(t) \cdot(N' \times N)\} \cdot N^2}{\|N\|^4 \cdot \|\boldsymbol c'(t)\|^2} \\ &= \frac{\boldsymbol c'(t) \cdot (N' \times N)}{\|N\|^2 \cdot \|\boldsymbol c'(t)\|^2} \quad \text{(因为 $N \cdot \boldsymbol c'(t) = 0$)} \\ &= \frac{N' \cdot (\boldsymbol c'(t) \times N)}{\|\boldsymbol c'(t)\|^4 \cdot \|\boldsymbol c''(t) \times \boldsymbol c'(t)\|^2} \\ \end{aligned}

分子部分

N=c×(c×c)+c×(c×c+c×c0)=(c(t)c(t)+c(t)c(t))第一分量c(t)+(c(t)c(t))第二分量c(t)+(c(t)c(t))第三分量c(t)c(t)×N=c(t)×[c(t)×(c(t)×c(t))]=c(t)×{(c(t)c(t))c(t)(c(t)c(t))c(t)}=(c(t)c(t))分量(c(t)×c(t))\begin{aligned} N' &= \boldsymbol c'' \times (\boldsymbol c'' \times \boldsymbol c') + \boldsymbol c' \times (\boldsymbol c''' \times \boldsymbol c' + \underbrace{\boldsymbol c'' \times \boldsymbol c''}_{0}) \\ &= \underbrace{-(\boldsymbol c''(t) \cdot \boldsymbol c''(t) + \boldsymbol c'(t) \cdot \boldsymbol c'''(t))}_{\text{第一分量}} \boldsymbol c'(t) + \underbrace{(\boldsymbol c''(t) \cdot \boldsymbol c'(t))}_{\text{第二分量}} \boldsymbol c''(t) + \underbrace{(\boldsymbol c'(t) \cdot \boldsymbol c'(t))}_{\text{第三分量}} \boldsymbol c'''(t) \\ \boldsymbol c'(t) \times N &= \boldsymbol c'(t) \times [\boldsymbol c'(t) \times (\boldsymbol c''(t) \times \boldsymbol c'(t))] \\ &= \boldsymbol c'(t) \times \{(\boldsymbol c'(t) \cdot \boldsymbol c'(t)) \boldsymbol c''(t) - (\boldsymbol c'(t) \cdot \boldsymbol c''(t)) \boldsymbol c'(t)\} \\ &= \underbrace{(\boldsymbol c'(t) \cdot \boldsymbol c'(t))}_{\text{分量}} (\boldsymbol c'(t) \times \boldsymbol c''(t)) \end{aligned}

所以二者做内积时,仅 c(t)\boldsymbol c'''(t) 项有贡献,由标量三重积得到

N(c(t)×N)=c(t)4c(t)(c(t)×c(t))=c(t)4det(c(t),c(t),c(t))N' \cdot (\boldsymbol c'(t) \times N) = \|\boldsymbol c'(t)\|^4 \boldsymbol c'''(t) \cdot (\boldsymbol c'(t) \times \boldsymbol c''(t)) = \|\boldsymbol c'(t)\|^4 \det(\boldsymbol c'(t), \boldsymbol c''(t), \boldsymbol c'''(t))

带回得到

τ(t)=det(c(t),c(t),c(t))c(t)×c(t)2\tau(t) = \frac{\det(\boldsymbol c'(t), \boldsymbol c''(t), \boldsymbol c'''(t))}{\|\boldsymbol c'(t) \times \boldsymbol c''(t)\|^2}


结论:对于一般曲线 c(t):IR3\boldsymbol c(t): I \to \mathbb R^3

κ(t)=c(t)×c(t)c(t)3,τ(t)=det(c(t),c(t),c(t))c(t)×c(t)2\kappa(t) = \frac{\|\boldsymbol c'(t) \times \boldsymbol c''(t)\|}{\|\boldsymbol c'(t)\|^3}, \quad \tau(t) = \frac{\det(\boldsymbol c'(t), \boldsymbol c''(t), \boldsymbol c'''(t))}{\|\boldsymbol c'(t) \times \boldsymbol c''(t)\|^2}

# 刚体变换下的曲率不变性

给定正交矩阵 AO(3)A \in O(3) 和向量 bR3\boldsymbol b \in \mathbb R^3,定义映射 T:R3R3T: \mathbb R^3 \to \mathbb R^3

T(x)=Ax+bT(\boldsymbol x) = A\boldsymbol x + \boldsymbol b

TTR3\mathbb R^3 上的 刚体变换 (Rigid Transformation)「合同変換」

  • A=1|A| = 1 时,称 TT正刚体变换
  • A=1|A| = -1 时,称 TT反刚体变换

对于刚体变换 TT,容易证明以下结论

T(x)T(y)=Ax+b(Ay+b)=A(xy)=(xy)TATA(xy)=xy\begin{aligned} \|T(\boldsymbol x) - T(\boldsymbol y)\| &= \|A\boldsymbol x + \boldsymbol b - (A\boldsymbol y + \boldsymbol b)\| \\ &= \|A(\boldsymbol x - \boldsymbol y)\| \\ &= \sqrt{(\boldsymbol x - \boldsymbol y)^T A^T A (\boldsymbol x - \boldsymbol y)} \\ &= \|\boldsymbol x - \boldsymbol y\| \end{aligned}

这意味着刚体变换保持了 R3\mathbb R^3 中任意两点之间的距离不变,因此也保持了曲线的形状不变,在这个理论基础上

  • c:IR3\boldsymbol c: I \to \mathbb R^3 为弧长参数化下的曲线,其曲率,挠率为 κ(s),τ(s)\kappa(s), \tau(s)
  • c~:IR3\widetilde{\boldsymbol c}: I \to \mathbb R^3TcT \circ \boldsymbol c,即 c~(s)=Ac(s)+b\widetilde{\boldsymbol c}(s) = A\boldsymbol c(s) + \boldsymbol b 刚体变换下的曲线,曲率,挠率为 κ~(s),τ~(s)\widetilde \kappa(s), \widetilde \tau(s)

c~\widetilde{\boldsymbol c} 进行微分,得到

c~(s)=Ac(s)c~(s)=Ac(s)c~(s)=Ac(s)\begin{aligned} \widetilde{\boldsymbol c}'(s) &= A\boldsymbol c'(s) \\ \widetilde{\boldsymbol c}''(s) &= A\boldsymbol c''(s) \\ \widetilde{\boldsymbol c}'''(s) &= A\boldsymbol c'''(s) \end{aligned}

因此代入曲率和挠率的计算,得到

κ~(s)=c~(s)×c~(s)c~(s)3=Ac(s)×Ac(s)Ac(s)3=A(c(s)×c(s))Ac(s)3=κ(s)τ~(s)=det(c~(s),c~(s),c~(s))c~(s)×c~(s)2=det(Ac(s),Ac(s),Ac(s))A(c(s)×c(s))2=Adet(c(s),c(s),c(s))c(s)×c(s)2=Aτ(s)\begin{aligned} \widetilde \kappa(s) &= \frac{\|\widetilde{\boldsymbol c}'(s) \times \widetilde{\boldsymbol c}''(s)\|}{\|\widetilde{\boldsymbol c}'(s)\|^3} = \frac{\|A\boldsymbol c'(s) \times A\boldsymbol c''(s)\|}{\|A\boldsymbol c'(s)\|^3} = \frac{\|A(\boldsymbol c'(s) \times \boldsymbol c''(s))\|}{\|A\boldsymbol c'(s)\|^3} = \kappa(s) \\ \widetilde \tau(s) &= \frac{\det(\widetilde{\boldsymbol c}'(s), \widetilde{\boldsymbol c}''(s), \widetilde{\boldsymbol c}'''(s))}{\|\widetilde{\boldsymbol c}'(s) \times \widetilde{\boldsymbol c}''(s)\|^2} = \frac{\det(A\boldsymbol c'(s), A\boldsymbol c''(s), A\boldsymbol c'''(s))}{\|A(\boldsymbol c'(s) \times \boldsymbol c''(s))\|^2} = \frac{|A| \cdot \det(\boldsymbol c'(s), \boldsymbol c''(s), \boldsymbol c'''(s))}{\|\boldsymbol c'(s) \times \boldsymbol c''(s)\|^2} = |A| \cdot \tau(s) \end{aligned}

这表明曲率 κ\kappa 在刚体变换下保持不变,而挠率 τ\tau 的符号可能会发生改变,具体取决于变换是正刚体变换还是反刚体变换。
同时也等价于:给定曲率和挠率,可以在刚体变换下唯一确定曲线,该结论称为 曲线论基本定理 (Fundamental Theorem of Curves)「曲線論の基本定理」