Laplace 展开是行列式计算中的一种重要方法,它通过将行列式展开为子行列式的线性组合,从而简化计算过程。

# 余子式

A=(aij)A = (a_{ij})nn 阶矩阵,去掉其第 ii 行与第 jj 列后所得到的 (n1)(n-1) 阶矩阵,称为 子矩阵,记作 AijA_{ij}。即

Aij=(a11a1,j1a1,j+1a1nai1,1ai1,j1ai1,j+1ai1,nai+1,1ai+1,j1ai+1,j+1ai+1,nan1an,j1an,j+1ann)A_{ij} = \begin{pmatrix} a_{11} & \cdots & a_{1,j-1} & a_{1,j+1} & \cdots & a_{1n} \\ \vdots & & \vdots & \vdots & & \vdots \\ a_{i-1,1} & \cdots & a_{i-1,j-1} & a_{i-1,j+1} & \cdots & a_{i-1,n} \\ a_{i+1,1} & \cdots & a_{i+1,j-1} & a_{i+1,j+1} & \cdots & a_{i+1,n} \\ \vdots & & \vdots & \vdots & & \vdots \\ a_{n1} & \cdots & a_{n,j-1} & a_{n,j+1} & \cdots & a_{nn} \end{pmatrix}

称该行列式 Aij|A_{ij}|aija_{ij}余子式 (Minor)「余因子」

行列式可以由余因子写出,这个过程被称为 Laplace 展开「余因子展開」

定理 Laplace 展开定理
A=(aij)A = (a_{ij})nn 阶矩阵

  • 对第 ii 行进行展开,有

A=j=1naij(1)i+jAij|A| = \sum_{j=1}^n a_{ij} (-1)^{i+j} |A_{ij}|

  • 对第 jj 列进行展开,有

A=i=1naij(1)i+jAij|A| = \sum_{i=1}^n a_{ij} (-1)^{i+j} |A_{ij}|

证明

对第 ii 行展开的证明如下

A=σSnsgn(σ)k=1nak,σ(k)=j=1nσSnσ(i)=jsgn(σ)k=1nak,σ(k)=j=1naijσSnσ(i)=jsgn(σ)k=1kinak,σ(k)\begin{aligned} |A| &= \sum_{\sigma \in S_n} \text{sgn}(\sigma) \prod_{k=1}^n a_{k, \sigma(k)} \\ &= \sum_{j=1}^n \sum_{\substack{\sigma \in S_n \\ \sigma(i) = j}} \text{sgn}(\sigma) \prod_{k=1}^n a_{k, \sigma(k)} \\ &= \sum_{j=1}^n a_{ij} \sum_{\substack{\sigma \in S_n \\ \sigma(i) = j}} \text{sgn}(\sigma) \prod_{\substack{k=1 \\ k \neq i}}^n a_{k, \sigma(k)} \end{aligned}

对于固定的 jj,考虑映射

ϕ:{σSnσ(i)=j}Sn1σσ\begin{aligned} \phi: \{\sigma \in S_n \mid \sigma(i) = j\} &\to S_{n-1} \\ \sigma &\mapsto \sigma' \end{aligned}

其中 σ\sigma' 为将 {1,2,,n}{i}\{1, 2, \dots, n\} \setminus \{i\} 映射到 {1,2,,n}{j}\{1, 2, \dots, n\} \setminus \{j\} 的双射,且对于任意 kik \neq i,有

σ(k)={σ(k),σ(k)<jσ(k)1,σ(k)>j\sigma'(k) = \begin{cases}\sigma(k), & \sigma(k) < j \\ \sigma(k) - 1, & \sigma(k) > j \end{cases}

显然 ϕ\phi 是一个双射
σ=ϕ(σ)\sigma' = \phi(\sigma),则

sgn(σ)=(1)i+jsgn(σ)\text{sgn}(\sigma) = (-1)^{i+j} \text{sgn}(\sigma')

因此

A=j=1naij(1)i+jσSn1sgn(σ)k=1n1ak,σ(k)=j=1naij(1)i+jAij\begin{aligned} |A| &= \sum_{j=1}^n a_{ij} (-1)^{i+j} \sum_{\sigma' \in S_{n-1}} \text{sgn}(\sigma') \prod_{k=1}^{n-1} a_{k', \sigma'(k')} \\ &= \sum_{j=1}^n a_{ij} (-1)^{i+j} |A_{ij}| \end{aligned}

\square

  • 实际上,这只是对选取的行或者列上的元素进行挨个处理,变成 aijAija_{ij} |A_{ij}| 这样的形式,然后再根据位置的奇偶性加上正负号,最后将它们相加而已,符号可以有以下类似棋盘的结构给出

(++++++++)\begin{pmatrix} +& - & + & - & \cdots \\ -& + & - & + & \cdots \\ +& - & + & - & \cdots \\ -& + & - & + & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}

在具备 Laplace 展开这样的操作后,求解复杂行列式的方针变为了

  • 利用行基本变换快速降次
  • 或者利用行基本变换尽可能在同一行 / 列中制造出更多的零
  • 选取那一行,进行展开降次

示例
求解

A=22021101302161426|A| = \begin{vmatrix} 2 & 2 & 0 & 2 \\ 1 & 1 & 0 & -1 \\ 3 & 0 & -2 & 1 \\ 6 & 14 & 2 & 6 \end{vmatrix}

R12R2R100041101302161426ExpansiononR141103026142R23R1R241100326142R36R1R34110032082=43282=4(6+16)=40\begin{aligned} &\xrightarrow{R1 - 2R2 \to R1} \begin{vmatrix} 0 & 0 & 0 & 4 \\ 1 & 1 & 0 & -1 \\ 3 & 0 & -2 & 1 \\ 6 & 14 & 2 & 6 \end{vmatrix} \\ &\xrightarrow{Expansion on R1} -4 \begin{vmatrix} 1 & 1 & 0 \\ 3 & 0 & -2 \\ 6 & 14 & 2 \end{vmatrix} \\ &\xrightarrow{R2 - 3R1 \to R2} -4 \begin{vmatrix} 1 & 1 & 0 \\ 0 & -3 & -2 \\ 6 & 14 & 2 \end{vmatrix} \\ &\xrightarrow{R3 - 6R1 \to R3} -4 \begin{vmatrix} 1 & 1 & 0 \\ 0 & -3 & -2 \\ 0 & 8 & 2 \end{vmatrix} \\ &= -4 \begin{vmatrix} -3 & -2 \\ 8 & 2 \end{vmatrix} \\ &= -4 (-6 + 16) \\ &= -40 \end{aligned}

\square

通过 Laplace 展开,还可以求解出一类著名的行列式

示例 Vandermonde 行列式

1111x1x2x3xnx12x22x32xn2x1n1x2n1x3n1xnn1=1i<jn(xjxi)\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ x_1 & x_2 & x_3 & \cdots & x_n \\ x_1^2 & x_2^2 & x_3^2 & \cdots & x_n^2 \\ \vdots & \vdots & \vdots & & \vdots \\ x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \cdots & x_n^{n-1} \end{vmatrix} = \prod_{1 \leq i \lt j \leq n} (x_j - x_i)

证明

通过归纳法证明,首先在 n=2n=2

11x1x2=x2x1\begin{vmatrix} 1 & 1 \\ x_1 & x_2 \end{vmatrix} = x_2 - x_1

成立

假设对于 n=kn=k 时成立,考虑 n=k+1n=k+1 的情况

1111x1x2x3xk+1x12x22x32xk+12x1kx2kx3kxk+1kRnx1R(n1)Rn1111x1x2x3xk+1x12x22x32xk+12x1k1x2k1x3k1xk+1k10x2x1x3x1xk+1x1R(n1)x1R(n2)R(n1)1111x1x2x3xk+1x12x22x32xk+1200000x2x1x3x1xk+1x1Rkx1R(k1)R(k)R2x1R1R211110x2x1x3x1xk+1x10(x2x1)(x2+x1)0(x3x1)(x3+x1)(xk+1x1)(xk+1+x1)00(x2x1)(x2k1+x2k2x1++x1k1)(xk+1x1)(xk+1k1+xk+1k2x1++x1k1)\begin{aligned} \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ x_1 & x_2 & x_3 & \cdots & x_{k+1} \\ x_1^2 & x_2^2 & x_3^2 & \cdots & x_{k+1}^2 \\ \vdots & \vdots & \vdots & & \vdots \\ x_1^{k} & x_2^{k} & x_3^{k} & \cdots & x_{k+1}^{k} \end{vmatrix} &\xrightarrow{Rn - x_1 R(n-1) \to Rn} \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ x_1 & x_2 & x_3 & \cdots & x_{k+1} \\ x_1^2 & x_2^2 & x_3^2 & \cdots & x_{k+1}^2 \\ \vdots & \vdots & \vdots & & \vdots \\ x_1^{k-1} & x_2^{k-1} & x_3^{k-1} & \cdots & x_{k+1}^{k-1} \\ 0 & x_2 - x_1 & x_3 - x_1 & \cdots & x_{k+1} - x_1 \end{vmatrix} \\ &\xrightarrow{R(n-1) - x_1 R(n-2) \to R(n-1)} \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ x_1 & x_2 & x_3 & \cdots & x_{k+1} \\ x_1^2 & x_2^2 & x_3^2 & \cdots & x_{k+1}^2 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & x_2 - x_1 & x_3 - x_1 & \cdots & x_{k+1} - x_1 \end{vmatrix} \\ &\xrightarrow{Rk - x_1 R(k-1) \to R(k)} \ldots \\[30pt] &\xrightarrow{R2 - x_1 R1 \to R2} \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & x_2 - x_1 & x_3 - x_1 & \cdots & x_{k+1} - x_1 \\ 0 & (x_2 - x_1)(x_2 + x_1) \\ 0 & (x_3 - x_1)(x_3 + x_1) & \cdots & (x_{k+1} - x_1)(x_{k+1} + x_1) \\ 0 & \vdots & \vdots & & \vdots \\ 0 & (x_2 - x_1)(x_2^{k-1} + x_2^{k-2} x_1 + \cdots + x_1^{k-1}) & \cdots & (x_{k+1} - x_1)(x_{k+1}^{k-1} + x_{k+1}^{k-2} x_1 + \cdots + x_1^{k-1}) \end{vmatrix} \end{aligned}

对其第一列进行 Laplace 展开

Expansion on C1x2x1x3x1xk+1x1(x2x1)(x2+x1)(x3x1)(x3+x1)(xk+1x1)(xk+1+x1)(x2x1)(x2k1+x2k2x1++x1k1)(x3x1)(x3k1+x3k2x1++x1k1)(xk+1x1)(xk+1k1+xk+1k2x1++x1k1)=j=2k+1(xjx1)111x2+x1x3+x1xk+1+x1x2k1+x2k2x1++x1k1x3k1+x3k2x1++x1k1xk+1k1+xk+1k2x1++x1k1\begin{aligned} &\xrightarrow{\text{Expansion on C1}} \begin{vmatrix} x_2 - x_1 & x_3 - x_1 & \cdots & x_{k+1} - x_1 \\ (x_2 - x_1)(x_2 + x_1) & (x_3 - x_1)(x_3 + x_1) & \cdots & (x_{k+1} - x_1)(x_{k+1} + x_1) \\ \vdots & \vdots & & \vdots \\ (x_2 - x_1)(x_2^{k-1} + x_2^{k-2} x_1 + \cdots + x_1^{k-1}) & (x_3 - x_1)(x_3^{k-1} + x_3^{k-2} x_1 + \cdots + x_1^{k-1}) & \cdots & (x_{k+1} - x_1)(x_{k+1}^{k-1} + x_{k+1}^{k-2} x_1 + \cdots + x_1^{k-1}) \end{vmatrix} \\ &= \prod_{j=2}^{k+1} (x_j - x_1) \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_2 + x_1 & x_3 + x_1 & \cdots & x_{k+1} + x_1 \\ \vdots & \vdots & & \vdots \\ x_2^{k-1} + x_2^{k-2} x_1 + \cdots + x_1^{k-1} & x_3^{k-1} + x_3^{k-2} x_1 + \cdots + x_1^{k-1} & \cdots & x_{k+1}^{k-1} + x_{k+1}^{k-2} x_1 + \cdots + x_1^{k-1} \end{vmatrix} \end{aligned}

由归纳假设可知

=j=2k+1(xjx1)2i<jk+1(xjxi)=1i<jk+1(xjxi)\begin{aligned} &= \prod_{j=2}^{k+1} (x_j - x_1) \prod_{2 \leq i \lt j \leq k+1} (x_j - x_i) \\ &= \prod_{1 \leq i \lt j \leq k+1} (x_j - x_i) \end{aligned}

\square

# 伴随矩阵

对于 nn 阶方阵 A=(aij)A = (a_{ij})
定义一个新的矩阵,使其的 (i,j)(i, j) 成分为 ajia_{ji} 的余子式与符号修正后的值,即

adj(A)=((1)i+jAji)=(A11A21A31(1)1+nAn1A12A22A32(1)2+nAn2A13A23A33(1)3+nAn3(1)n+1A1n(1)n+2A2n(1)n+3A3nAnn)\text{adj}(A) = \left((-1)^{i+j} |A_{ji}|\right) = \begin{pmatrix} |A_{11}| & -|A_{21}| & |A_{31}| & \cdots & (-1)^{1+n} |A_{n1}| \\ -|A_{12}| & |A_{22}| & -|A_{32}| & \cdots & (-1)^{2+n} |A_{n2}| \\ |A_{13}| & -|A_{23}| & |A_{33}| & \cdots & (-1)^{3+n} |A_{n3}| \\ \vdots & \vdots & \vdots & & \vdots \\ (-1)^{n+1} |A_{1n}| & (-1)^{n+2} |A_{2n}| & (-1)^{n+3} |A_{3n}| & \cdots & |A_{nn}| \end{pmatrix}

称该矩阵为 AA伴随矩阵 (Adjoint Matrix)「余因子行列」

  • 注意这是转置的!

伴随矩阵的一个重要作用是求解逆矩阵

命题

Aadj(A)=adj(A)A=AEnA \cdot \text{adj}(A) = \text{adj}(A) \cdot A = |A| E_n

证明

考虑乘积 Aadj(A)A \cdot \text{adj}(A) 的第 (i,j)(i, j) 元素,根据矩阵乘法的定义

(Aadj(A))ij=k=1naik(1)k+jAjk(A \cdot \text{adj}(A))_{ij} = \sum_{k=1}^n a_{ik} \cdot (-1)^{k+j} |A_{jk}|

i=ji = j 时,该式变为

(Aadj(A))ii=k=1naik(1)k+iAik=A(A \cdot \text{adj}(A))_{ii} = \sum_{k=1}^n a_{ik} \cdot (-1)^{k+i} |A_{ik}| = |A|

这正是对第 ii 行进行 Laplace 展开的结果,这意味着 Aadj(A)A \cdot \text{adj}(A) 的对角线元素均为 A|A|

iji \neq j 时,考虑矩阵

B=(a11a12a1naj1aj2ajnai1ai2ainan1an2ann)B = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}

即将 AA 的第 ii 行与第 jj 行互换后所得到的矩阵
BB 的第 jj 行进行 Laplace 展开,有

B=k=1naik(1)k+jAjk|B| = \sum_{k=1}^n a_{ik} \cdot (-1)^{k+j} |A_{jk}|

但是由于 BB 的第 ii 行与第 jj 行互换了,所以 B=A|B| = -|A|,而 A|A| 的展开式正是上式,因此

(Aadj(A))ij=0(A \cdot \text{adj}(A))_{ij} = 0

这意味着 Aadj(A)A \cdot \text{adj}(A) 的非对角线元素均为 00
综上所述,Aadj(A)=AEnA \cdot \text{adj}(A) = |A| E_n,同理可证 adj(A)A=AEn\text{adj}(A) \cdot A = |A| E_n
\square

所以,如果 AA 可逆,自然有

A(1Aadj(A))=1Aadj(A)A=EnA \left(\frac{1}{|A|} \text{adj}(A)\right) = \frac{1}{|A|} \text{adj}(A) A = E_n

A1=1Aadj(A)A^{-1} = \frac{1}{|A|} \text{adj}(A)