对于在微分几何中常见的数种曲面进行介绍与计算
以下 S=f({0}),σ:DSS = f(\{0\}),\quad \boldsymbol \sigma: D \to S
曲率计算仅考虑 σ(D)\boldsymbol \sigma(D)

计算包含项目

  • 曲面方程与参数表示
  • 正向法向量场
  • 第一基本形式
  • 第二基本形式
  • 曲率

# 球面 Sphere

# 曲面方程与参数表示

球面
r>0,D=(0,π)×(0,2π)r > 0,\quad D = (0,\pi) \times (0,2\pi)

f(x,y,z)=x2+y2+z2r2,σ(u,v)=(rsinucosvrsinusinvrcosu)f(x,y,z) = x^2 + y^2 + z^2 - r^2,\quad \boldsymbol \sigma(u,v) = \begin{pmatrix} r \sin u \cos v \\ r \sin u \sin v \\ r \cos u \end{pmatrix}

# 正向法向量场

σu×σv=(rcosucosvrcosusinvrsinu)×(rsinusinvrsinucosv0)=(r2sin2ucosvr2sin2usinvr2sinucosu)\boldsymbol \sigma_u \times \boldsymbol \sigma_v = \begin{pmatrix} r \cos u \cos v \\ r \cos u \sin v \\ -r \sin u \end{pmatrix} \times \begin{pmatrix} -r \sin u \sin v \\ r \sin u \cos v \\ 0 \end{pmatrix} = \begin{pmatrix} r^2 \sin^2 u \cos v \\ r^2 \sin^2 u \sin v \\ r^2 \sin u \cos u \end{pmatrix}

n(σ(u,v))=σu×σvσu×σv=(sinucosvsinusinvcosu)\boldsymbol n(\boldsymbol \sigma(u,v)) = \frac{\boldsymbol \sigma_u \times \boldsymbol \sigma_v}{\|\boldsymbol \sigma_u \times \boldsymbol \sigma_v\|} = \begin{pmatrix} \sin u \cos v \\ \sin u \sin v \\ \cos u \end{pmatrix}

# 第一基本量

E=σuσu=r2E = \boldsymbol \sigma_u \cdot \boldsymbol \sigma_u = r^2

F=σuσv=0,F = \boldsymbol \sigma_u \cdot \boldsymbol \sigma_v = 0,

G=σvσv=r2sin2uG = \boldsymbol \sigma_v \cdot \boldsymbol \sigma_v = r^2 \sin^2 u

# 第二基本量

σuu=(rsinucosvrsinusinvrcosu),σuv=(rcosusinvrcosucosv0),σvv=(rsinucosvrsinusinv0)\boldsymbol \sigma_{uu} = \begin{pmatrix} -r \sin u \cos v \\ -r \sin u \sin v \\ -r \cos u \end{pmatrix},\quad \boldsymbol \sigma_{uv} = \begin{pmatrix} -r \cos u \sin v \\ r \cos u \cos v \\ 0 \end{pmatrix},\quad \boldsymbol \sigma_{vv} = \begin{pmatrix} -r \sin u \cos v \\ -r \sin u \sin v \\ 0 \end{pmatrix}

L=σuun=rL = \boldsymbol \sigma_{uu} \cdot \boldsymbol n = -r

M=σuvn=0M = \boldsymbol \sigma_{uv} \cdot \boldsymbol n = 0

N=σvvn=rsin2uN = \boldsymbol \sigma_{vv} \cdot \boldsymbol n = -r \sin^2 u

# 曲率

K=LNM2EGF2=1r2K = \frac{LN - M^2}{EG - F^2} = \frac{1}{r^2}

H=EN2FM+GL2(EGF2)=1rH = \frac{EN - 2FM + GL}{2(EG - F^2)} = -\frac{1}{r}

κ1=1r,κ2=1r\kappa_1 = -\frac{1}{r},\quad \kappa_2 = -\frac{1}{r}

# 螺旋面 Helicoid

# 曲面方程与参数表示

螺旋面
k>0,D=R2k > 0,\ D = \mathbb R^2

f(x,y,z)=xsinzkycoszk,σ(u,v)=(ucosvusinvkv)f(x,y,z) = x \sin\frac{z}{k} - y \cos\frac{z}{k},\quad \boldsymbol \sigma(u,v) = \begin{pmatrix} u \cos v \\ u \sin v \\ kv \end{pmatrix}

# 正向法向量场

σu×σv=(cosvsinv0)×(00k)=(ksinvkcosv0)\boldsymbol \sigma_u \times \boldsymbol \sigma_v = \begin{pmatrix}\cos v \\ \sin v \\ 0\end{pmatrix} \times \begin{pmatrix}0 \\ 0 \\ k\end{pmatrix} = \begin{pmatrix}k \sin v \\ -k \cos v \\ 0\end{pmatrix}

n(σ(u,v))=σu×σvσu×σv=1u2+k2(sinvcosvuk)\boldsymbol n(\boldsymbol \sigma(u,v)) = \frac{\boldsymbol \sigma_u \times \boldsymbol \sigma_v}{\|\boldsymbol \sigma_u \times \boldsymbol \sigma_v\|} = \frac{1}{\sqrt{u^2 + k^2}} \begin{pmatrix} \sin v \\ -\cos v \\ \frac{u}{k} \end{pmatrix}

# 第一基本量

E=σuσu=1E = \boldsymbol \sigma_u \cdot \boldsymbol \sigma_u = 1

F=σuσv=0,F = \boldsymbol \sigma_u \cdot \boldsymbol \sigma_v = 0,

G=σvσv=u2+k2G = \boldsymbol \sigma_v \cdot \boldsymbol \sigma_v = u^2 + k^2

# 第二基本量

σuu=0,σuv=(sinvcosv0),σvv=(ucosvusinv0)\boldsymbol \sigma_{uu} = \boldsymbol 0,\quad \boldsymbol \sigma_{uv} = \begin{pmatrix} -\sin v \\ \cos v \\ 0 \end{pmatrix},\quad \boldsymbol \sigma_{vv} = \begin{pmatrix} -u \cos v \\ -u \sin v \\ 0 \end{pmatrix}

L=σuun=0L = \boldsymbol \sigma_{uu} \cdot \boldsymbol n = 0

M=σuvn=ku2+k2M = \boldsymbol \sigma_{uv} \cdot \boldsymbol n = -\frac{k}{\sqrt{u^2 + k^2}}

N=σvvn=0N = \boldsymbol \sigma_{vv} \cdot \boldsymbol n = 0

# 曲率

K=LNM2EGF2=k2(u2+k2)2K = \frac{LN - M^2}{EG - F^2} = -\frac{k^2}{(u^2 + k^2)^2}

H=EN2FM+GL2(EGF2)=0H = \frac{EN - 2FM + GL}{2(EG - F^2)} = 0

κ1=ku2+k2,κ2=ku2+k2\kappa_1 = \frac{k}{u^2 + k^2},\quad \kappa_2 = -\frac{k}{u^2 + k^2}

# 环面 Torus

# 曲面方程与参数表示

环面
R>r>0,D=(0,2π)2R > r > 0,\quad D = (0,2\pi)^2

f(x,y,z)=(x2+y2R)2+z2r2,σ(u,v)=((R+rcosu)cosv(R+rcosu)sinvrsinu)f(x,y,z) = \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 - r^2,\quad \boldsymbol \sigma(u,v) = \begin{pmatrix} (R + r \cos u) \cos v \\ (R + r \cos u) \sin v \\ r \sin u \end{pmatrix}

# 正向法向量场

σu×σv=(rsinucosvrsinusinvrcosu)×((R+rcosu)sinv(R+rcosu)cosv0)=(rcosu(R+rcosu)cosvrcosu(R+rcosu)sinvrsinu(R+rcosu))\boldsymbol \sigma_u \times \boldsymbol \sigma_v = \begin{pmatrix} -r \sin u \cos v \\ -r \sin u \sin v \\ r \cos u \end{pmatrix} \times \begin{pmatrix} -(R + r \cos u) \sin v \\ (R + r \cos u) \cos v \\ 0 \end{pmatrix} = \begin{pmatrix} -r \cos u (R + r \cos u) \cos v \\ -r \cos u (R + r \cos u) \sin v \\ -r \sin u (R + r \cos u) \end{pmatrix}

n(σ(u,v))=σu×σvσu×σv=(cosucosvcosusinvsinu)\boldsymbol n(\boldsymbol \sigma(u,v)) = \frac{\boldsymbol \sigma_u \times \boldsymbol \sigma_v}{\|\boldsymbol \sigma_u \times \boldsymbol \sigma_v\|} = \begin{pmatrix} -\cos u \cos v \\ -\cos u \sin v \\ -\sin u \end{pmatrix}

# 第一基本量

E=σuσu=r2E = \boldsymbol \sigma_u \cdot \boldsymbol \sigma_u = r^2

F=σuσv=0,F = \boldsymbol \sigma_u \cdot \boldsymbol \sigma_v = 0,

G=σvσv=(R+rcosu)2G = \boldsymbol \sigma_v \cdot \boldsymbol \sigma_v = (R + r \cos u)^2

# 第二基本量

σuu=(rcosucosvrcosusinvrsinu),σuv=(rsinusinvrsinucosv0),σvv=((R+rcosu)cosv(R+rcosu)sinv0)\boldsymbol \sigma_{uu} = \begin{pmatrix} -r \cos u \cos v \\ -r \cos u \sin v \\ -r \sin u \end{pmatrix},\quad \boldsymbol \sigma_{uv} = \begin{pmatrix} r \sin u \sin v \\ -r \sin u \cos v \\ 0 \end{pmatrix},\quad \boldsymbol \sigma_{vv} = \begin{pmatrix} -(R + r \cos u) \cos v \\ -(R + r \cos u) \sin v \\ 0 \end{pmatrix}

L=σuun=rL = \boldsymbol \sigma_{uu} \cdot \boldsymbol n = r

M=σuvn=0M = \boldsymbol \sigma_{uv} \cdot \boldsymbol n = 0

N=σvvn=(R+rcosu)cosuN = \boldsymbol \sigma_{vv} \cdot \boldsymbol n = (R + r \cos u) \cos u

# 曲率

K=LNM2EGF2=cosur(R+rcosu)K = \frac{LN - M^2}{EG - F^2} = \frac{\cos u}{r (R + r \cos u)}

H=EN2FM+GL2(EGF2)=(R+2rcosu)2r(R+rcosu)H = \frac{EN - 2FM + GL}{2(EG - F^2)} = \frac{(R + 2r \cos u)}{2r (R + r \cos u)}

κ1=1r,κ2=cosuR+rcosu\kappa_1 = \frac{1}{r},\quad \kappa_2 = \frac{\cos u}{R + r \cos u}

# 椭球 Ellipsoid

# 曲面方程与参数表示

椭球
a,b,c>0,D=(0,π)×(0,2π)a,b,c > 0,\quad D = (0,\pi) \times (0,2\pi)

f(x,y,z)=x2a2+y2b2+z2c21,σ(u,v)=(asinucosvbsinusinvccosu)f(x,y,z) = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1,\quad \boldsymbol \sigma(u,v) = \begin{pmatrix} a \sin u \cos v \\ b \sin u \sin v \\ c \cos u \end{pmatrix}

# 正向法向量场

σu×σv=(acosucosvbcosusinvcsinu)×(asinusinvbsinucosv0)=(bcsin2ucosvacsin2usinvabsinucosu)\boldsymbol \sigma_u \times \boldsymbol \sigma_v = \begin{pmatrix} a \cos u \cos v \\ b \cos u \sin v \\ -c \sin u \end{pmatrix} \times \begin{pmatrix} -a \sin u \sin v \\ b \sin u \cos v \\ 0 \end{pmatrix} = \begin{pmatrix} bc \sin^2 u \cos v \\ ac \sin^2 u \sin v \\ ab \sin u \cos u \end{pmatrix}

n(σ(u,v))=σu×σvσu×σv=1c2sin2u+abcos2u(bcsinucosvacsinusinvabcosu)\boldsymbol n(\boldsymbol \sigma(u,v)) = \frac{\boldsymbol \sigma_u \times \boldsymbol \sigma_v}{\|\boldsymbol \sigma_u \times \boldsymbol \sigma_v\|} = \frac{1}{\sqrt{c^2 \sin^2 u + ab \cos^2 u}} \begin{pmatrix} bc \sin u \cos v \\ ac \sin u \sin v \\ ab \cos u \end{pmatrix}

# 第一基本量

E=σuσu=a2cos2ucos2v+b2cos2usin2v+c2sin2uE = \boldsymbol \sigma_u \cdot \boldsymbol \sigma_u = a^2 \cos^2 u \cos^2 v + b^2 \cos^2 u \sin^2 v + c^2 \sin^2 u

F=σuσv=0,F = \boldsymbol \sigma_u \cdot \boldsymbol \sigma_v = 0,

G=σvσv=a2sin2usin2v+b2sin2ucos2vG = \boldsymbol \sigma_v \cdot \boldsymbol \sigma_v = a^2 \sin^2 u \sin^2 v + b^2 \sin^2 u \cos^2 v

# 第二基本量

σuu=(asinucosvbsinusinvccosu),σuv=(acosusinvbcosucosv0),σvv=(asinucosvbsinusinv0)\boldsymbol \sigma_{uu} = \begin{pmatrix} -a \sin u \cos v \\ -b \sin u \sin v \\ -c \cos u \end{pmatrix},\quad \boldsymbol \sigma_{uv} = \begin{pmatrix} -a \cos u \sin v \\ b \cos u \cos v \\ 0 \end{pmatrix},\quad \boldsymbol \sigma_{vv} = \begin{pmatrix} -a \sin u \cos v \\ -b \sin u \sin v \\ 0 \end{pmatrix}

L=σuun=abcsinuc2sin2u+abcos2uL = \boldsymbol \sigma_{uu} \cdot \boldsymbol n = \frac{abc \sin u}{\sqrt{c^2 \sin^2 u + ab \cos^2 u}}

M=σuvn=0M = \boldsymbol \sigma_{uv} \cdot \boldsymbol n = 0

N=σvvn=absinuc2sin2u+abcos2uN = \boldsymbol \sigma_{vv} \cdot \boldsymbol n = \frac{ab \sin u}{\sqrt{c^2 \sin^2 u + ab \cos^2 u}}

# 曲率

K=LNM2EGF2=abc(c2sin2u+abcos2u)2K = \frac{LN - M^2}{EG - F^2} = \frac{abc}{(c^2 \sin^2 u + ab \cos^2 u)^2}

H=EN2FM+GL2(EGF2)=abc(a2+b2+c22(a2c2)sin2u2(b2c2)sin2ucos2v)2(c2sin2u+abcos2u)3/2(a2sin2usin2v+b2sin2ucos2v+c2cos2u)H = \frac{EN - 2FM + GL}{2(EG - F^2)} = \frac{abc (a^2 + b^2 + c^2 - 2(a^2 - c^2) \sin^2 u - 2(b^2 - c^2) \sin^2 u \cos^2 v)}{2 (c^2 \sin^2 u + ab \cos^2 u)^{3/2} (a^2 \sin^2 u \sin^2 v + b^2 \sin^2 u \cos^2 v + c^2 \cos^2 u)}

κ1=abc(c2sin2u+abcos2u)3/2,κ2=abcc2sin2u+abcos2u(a2sin2usin2v+b2sin2ucos2v+c2cos2u)\kappa_1 = \frac{abc}{(c^2 \sin^2 u + ab \cos^2 u)^{3/2}},\quad \kappa_2 = \frac{abc}{\sqrt{c^2 \sin^2 u + ab \cos^2 u} (a^2 \sin^2 u \sin^2 v + b^2 \sin^2 u \cos^2 v + c^2 \cos^2 u)}

# 单叶双曲面 Hyperbolioid

# 曲面方程与参数表示

单叶双曲面
a,b,c>0,D=R×(0,2π)a,b,c > 0,\quad D = \mathbb R \times (0,2\pi)

f(x,y,z)=x2a2+y2b2z2c21,σ(u,v)=(acoshucosvbcoshusinvcsinhu)f(x,y,z) = \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} - 1,\quad \boldsymbol \sigma(u,v) = \begin{pmatrix} a \cosh u \cos v \\ b \cosh u \sin v \\ c \sinh u \end{pmatrix}

# 正向法向量场

σu×σv=(asinhucosvbsinhusinvccoshu)×(acoshusinvbcoshucosv0)=(bccoshusinhucosvaccoshusinhusinvabcosh2u)\boldsymbol \sigma_u \times \boldsymbol \sigma_v = \begin{pmatrix} a \sinh u \cos v \\ b \sinh u \sin v \\ c \cosh u \end{pmatrix} \times \begin{pmatrix} -a \cosh u \sin v \\ b \cosh u \cos v \\ 0 \end{pmatrix} = \begin{pmatrix} -bc \cosh u \sinh u \cos v \\ -ac \cosh u \sinh u \sin v \\ ab \cosh^2 u \end{pmatrix}

n(σ(u,v))=σu×σvσu×σv=1c2sinh2u+abcosh2u(bcsinhucosvacsinhusinvabcoshu)\boldsymbol n(\boldsymbol \sigma(u,v)) = \frac{\boldsymbol \sigma_u \times \boldsymbol \sigma_v}{\|\boldsymbol \sigma_u \times \boldsymbol \sigma_v\|} = \frac{1}{\sqrt{c^2 \sinh^2 u + ab \cosh^2 u}} \begin{pmatrix} -bc \sinh u \cos v \\ -ac \sinh u \sin v \\ ab \cosh u \end{pmatrix}

# 第一基本量

E=σuσu=a2sinh2ucos2v+b2sinh2usin2vc2cosh2uE = \boldsymbol \sigma_u \cdot \boldsymbol \sigma_u = a^2 \sinh^2 u \cos^2 v + b^2 \sinh^2 u \sin^2 v - c^2 \cosh^2 u

F=σuσv=0,F = \boldsymbol \sigma_u \cdot \boldsymbol \sigma_v = 0,

G=σvσv=a2cosh2usin2v+b2cosh2ucos2vG = \boldsymbol \sigma_v \cdot \boldsymbol \sigma_v = a^2 \cosh^2 u \sin^2 v + b^2 \cosh^2 u \cos^2 v

# 第二基本量

σuu=(acoshucosvbcoshusinvcsinhu),σuv=(asinhusinvbsinhucosv0),σvv=(acoshucosvbcoshusinv0)\boldsymbol \sigma_{uu} = \begin{pmatrix} a \cosh u \cos v \\ b \cosh u \sin v \\ c \sinh u \end{pmatrix},\quad \boldsymbol \sigma_{uv} = \begin{pmatrix} -a \sinh u \sin v \\ b \sinh u \cos v \\ 0 \end{pmatrix},\quad \boldsymbol \sigma_{vv} = \begin{pmatrix} -a \cosh u \cos v \\ -b \cosh u \sin v \\ 0 \end{pmatrix}

L=σuun=abccoshuc2sinh2u+abcosh2uL = \boldsymbol \sigma_{uu} \cdot \boldsymbol n = \frac{-abc \cosh u}{\sqrt{c^2 \sinh^2 u + ab \cosh^2 u}}

M=σuvn=0M = \boldsymbol \sigma_{uv} \cdot \boldsymbol n = 0

N=σvvn=abcoshuc2sinh2u+abcosh2uN = \boldsymbol \sigma_{vv} \cdot \boldsymbol n = \frac{-ab \cosh u}{\sqrt{c^2 \sinh^2 u + ab \cosh^2 u}}

# 曲率

K=LNM2EGF2=abc(c2sinh2u+abcosh2u)2K = \frac{LN - M^2}{EG - F^2} = \frac{-abc}{(c^2 \sinh^2 u + ab \cosh^2 u)^2}

H=EN2FM+GL2(EGF2)=abc(a2+b2c2+2(c2a2)sinh2u+2(c2b2)sinh2ucos2v)2(c2sinh2u+abcosh2u)3/2(a2cosh2usin2v+b2cosh2ucos2vc2sinh2u)H = \frac{EN - 2FM + GL}{2(EG - F^2)} = \frac{-abc (a^2 + b^2 - c^2 + 2(c^2 - a^2) \sinh^2 u + 2(c^2 - b^2) \sinh^2 u \cos^2 v)}{2 (c^2 \sinh^2 u + ab \cosh^2 u)^{3/2} (a^2 \cosh^2 u \sin^2 v + b^2 \cosh^2 u \cos^2 v - c^2 \sinh^2 u)}

κ1=abc(c2sinh2u+abcosh2u)3/2,κ2=abcc2sinh2u+abcosh2u(a2cosh2usin2v+b2cosh2ucos2vc2sinh2u)\kappa_1 = \frac{-abc}{(c^2 \sinh^2 u + ab \cosh^2 u)^{3/2}},\quad \kappa_2 = \frac{-abc}{\sqrt{c^2 \sinh^2 u + ab \cosh^2 u} (a^2 \cosh^2 u \sin^2 v + b^2 \cosh^2 u \cos^2 v - c^2 \sinh^2 u)}

# 双叶双曲面 Hyperboloid of two sheets

# 曲面方程与参数表示

双叶双曲面
a,b,c>0,D=R×(0,2π)a,b,c > 0,\quad D = \mathbb R \times (0,2\pi)

f(x,y,z)=x2a2+y2b2z2c2+1,σ+(u,v)=(aubvcx2a2+y2b2+1),σ(u,v)=(aubvcx2a2+y2b2+1)f(x,y,z) = \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} + 1,\quad \boldsymbol \sigma_+(u,v) = \begin{pmatrix} au \\ bv \\ c \sqrt{\frac{x^2}{a^2} + \frac{y^2}{b^2} + 1} \end{pmatrix},\quad \boldsymbol \sigma_-(u,v) = \begin{pmatrix} au \\ bv \\ -c \sqrt{\frac{x^2}{a^2} + \frac{y^2}{b^2} + 1} \end{pmatrix}

# 正向法向量场

σ+u×σ+v=(a0cuu2+v2+1)×(0bcvu2+v2+1)=(bcvu2+v2+1acuu2+v2+1ab)\boldsymbol \sigma_{+u} \times \boldsymbol \sigma_{+v} = \begin{pmatrix} a \\ 0 \\ \frac{cu}{\sqrt{u^2 + v^2 + 1}} \end{pmatrix} \times \begin{pmatrix} 0 \\ b \\ \frac{cv}{\sqrt{u^2 + v^2 + 1}} \end{pmatrix} = \begin{pmatrix} -\frac{bc v}{\sqrt{u^2 + v^2 + 1}} \\ -\frac{ac u}{\sqrt{u^2 + v^2 + 1}} \\ ab \end{pmatrix}

n(σ+(u,v))=σ+u×σ+vσ+u×σ+v=1c2(u2+v2)+ab(bcvacuab)\boldsymbol n(\boldsymbol \sigma_+(u,v)) = \frac{\boldsymbol \sigma_{+u} \times \boldsymbol \sigma_{+v}}{\|\boldsymbol \sigma_{+u} \times \boldsymbol \sigma_{+v}\|} = \frac{1}{\sqrt{c^2 (u^2 + v^2) + ab}} \begin{pmatrix} -bc v \\ -ac u \\ ab \end{pmatrix}

σu×σv=(a0cuu2+v2+1)×(0bcvu2+v2+1)=(bcvu2+v2+1acuu2+v2+1ab)\boldsymbol \sigma_{-u} \times \boldsymbol \sigma_{-v} = \begin{pmatrix} a \\ 0 \\ -\frac{cu}{\sqrt{u^2 + v^2 + 1}} \end{pmatrix} \times \begin{pmatrix} 0 \\ b \\ -\frac{cv}{\sqrt{u^2 + v^2 + 1}} \end{pmatrix} = \begin{pmatrix} \frac{bc v}{\sqrt{u^2 + v^2 + 1}} \\ \frac{ac u}{\sqrt{u^2 + v^2 + 1}} \\ ab \end{pmatrix}

n(σ(u,v))=σu×σvσu×σv=1c2(u2+v2)+ab(bcvacuab)\boldsymbol n(\boldsymbol \sigma_-(u,v)) = \frac{\boldsymbol \sigma_{-u} \times \boldsymbol \sigma_{-v}}{\|\boldsymbol \sigma_{-u} \times \boldsymbol \sigma_{-v}\|} = \frac{1}{\sqrt{c^2 (u^2 + v^2) + ab}} \begin{pmatrix} bc v \\ ac u \\ ab \end{pmatrix}

# 第一基本量

E=σ±uσ±u=a2+c2u2u2+v2+1E = \boldsymbol \sigma_{\pm u} \cdot \boldsymbol \sigma_{\pm u} = a^2 + \frac{c^2 u^2}{u^2 + v^2 + 1}

F=σ±uσ±v=c2uvu2+v2+1,F = \boldsymbol \sigma_{\pm u} \cdot \boldsymbol \sigma_{\pm v} = \frac{c^2 uv}{u^2 + v^2 + 1},

G=σ±vσ±v=b2+c2v2u2+v2+1G = \boldsymbol \sigma_{\pm v} \cdot \boldsymbol \sigma_{\pm v} = b^2 + \frac{c^2 v^2}{u^2 + v^2 + 1}

# 第二基本量

σ±uu=(00±c(u2+v2+1)3/2),σ±uv=(00±cuv(u2+v2+1)3/2),σ±vv=(00±c(u2+v2+1)3/2)\boldsymbol \sigma_{\pm uu} = \begin{pmatrix} 0 \\ 0 \\ \pm \frac{c}{(u^2 + v^2 + 1)^{3/2}} \end{pmatrix},\quad \boldsymbol \sigma_{\pm uv} = \begin{pmatrix} 0 \\ 0 \\ \pm \frac{-c uv}{(u^2 + v^2 + 1)^{3/2}} \end{pmatrix},\quad \boldsymbol \sigma_{\pm vv} = \begin{pmatrix} 0 \\ 0 \\ \pm \frac{c}{(u^2 + v^2 + 1)^{3/2}} \end{pmatrix}

L=σ±uun=abc(c2(u2+v2)+ab)u2+v2+1L = \boldsymbol \sigma_{\pm uu} \cdot \boldsymbol n = \frac{-abc}{(c^2 (u^2 + v^2) + ab) \sqrt{u^2 + v^2 + 1}}

M=σ±uvn=abcuv(c2(u2+v2)+ab)u2+v2+1M = \boldsymbol \sigma_{\pm uv} \cdot \boldsymbol n = \frac{abc uv}{(c^2 (u^2 + v^2) + ab) \sqrt{u^2 + v^2 + 1}}

N=σ±vvn=abc(c2(u2+v2)+ab)u2+v2+1N = \boldsymbol \sigma_{\pm vv} \cdot \boldsymbol n = \frac{-abc}{(c^2 (u^2 + v^2) + ab) \sqrt{u^2 + v^2 + 1}}

# 曲率

K=LNM2EGF2=abc(c2(u2+v2)+ab)2(u2+v2+1)2K = \frac{LN - M^2}{EG - F^2} = \frac{abc}{(c^2 (u^2 + v^2) + ab)^2 (u^2 + v^2 + 1)^2}

H=EN2FM+GL2(EGF2)=abc(a2+b2c2+2(c2+a2)u2+2(c2+b2)v2)2(c2(u2+v2)+ab)3/2(u2+v2+1)3/2(a2+c2u2u2+v2+1+b2+c2v2u2+v2+1)H = \frac{EN - 2FM + GL}{2(EG - F^2)} = \frac{-abc (a^2 + b^2 - c^2 + 2(c^2 + a^2) u^2 + 2(c^2 + b^2) v^2)}{2 (c^2 (u^2 + v^2) + ab)^{3/2} (u^2 + v^2 + 1)^{3/2} (a^2 + \frac{c^2 u^2}{u^2 + v^2 + 1} + b^2 + \frac{c^2 v^2}{u^2 + v^2 + 1})}

κ1=abc(c2(u2+v2)+ab)3/2(u2+v2+1)3/2,κ2=abcc2(u2+v2)+ab(u2+v2+1)1/2(a2+c2u2u2+v2+1+b2+c2v2u2+v2+1)\kappa_1 = \frac{-abc}{(c^2 (u^2 + v^2) + ab)^{3/2} (u^2 + v^2 + 1)^{3/2}},\quad \kappa_2 = \frac{-abc}{\sqrt{c^2 (u^2 + v^2) + ab} (u^2 + v^2 + 1)^{1/2} (a^2 + \frac{c^2 u^2}{u^2 + v^2 + 1} + b^2 + \frac{c^2 v^2}{u^2 + v^2 + 1})}

# 椭圆抛物面 Elliptic Paraboloid

# 曲面方程与参数表示

椭圆抛物面
a,b>0,D=R2a,b > 0,\quad D = \mathbb R^2

f(x,y,z)=x2a2+y2b2z=0,σ(u,v)=(uvu2a2+v2b2)f(x,y,z) = \frac{x^2}{a^2} + \frac{y^2}{b^2} - z = 0,\quad \boldsymbol \sigma(u,v) = \begin{pmatrix} u \\ v \\ \frac{u^2}{a^2} + \frac{v^2}{b^2} \end{pmatrix}

# 正向法向量场

σu×σv=(102ua2)×(012vb2)=(2ua22vb21)\boldsymbol \sigma_u \times \boldsymbol \sigma_v = \begin{pmatrix} 1 \\ 0 \\ \frac{2u}{a^2} \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ \frac{2v}{b^2} \end{pmatrix} = \begin{pmatrix} -\frac{2u}{a^2} \\ -\frac{2v}{b^2} \\ 1 \end{pmatrix}

n(σ(u,v))=σu×σvσu×σv=11+4u2a4+4v2b4(2ua22vb21)\boldsymbol n(\boldsymbol \sigma(u,v)) = \frac{\boldsymbol \sigma_u \times \boldsymbol \sigma_v}{\|\boldsymbol \sigma_u \times \boldsymbol \sigma_v\|} = \frac{1}{\sqrt{1 + \frac{4u^2}{a^4} + \frac{4v^2}{b^4}}} \begin{pmatrix} -\frac{2u}{a^2} \\ -\frac{2v}{b^2} \\ 1 \end{pmatrix}

# 第一基本量

E=σuσu=1+4u2a4E = \boldsymbol \sigma_u \cdot \boldsymbol \sigma_u = 1 + \frac{4u^2}{a^4}

F=σuσv=4uva2b2,F = \boldsymbol \sigma_u \cdot \boldsymbol \sigma_v = \frac{4uv}{a^2 b^2},

G=σvσv=1+4v2b4G = \boldsymbol \sigma_v \cdot \boldsymbol \sigma_v = 1 + \frac{4v^2}{b^4}

# 第二基本量

σuu=(002a2),σuv=(000),σvv=(002b2)\boldsymbol \sigma_{uu} = \begin{pmatrix} 0 \\ 0 \\ \frac{2}{a^2} \end{pmatrix},\quad \boldsymbol \sigma_{uv} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},\quad \boldsymbol \sigma_{vv} = \begin{pmatrix} 0 \\ 0 \\ \frac{2}{b^2} \end{pmatrix}

L=σuun=2/a21+4u2a4+4v2b4L = \boldsymbol \sigma_{uu} \cdot \boldsymbol n = \frac{2/a^2}{\sqrt{1 + \frac{4u^2}{a^4} + \frac{4v^2}{b^4}}}

M=σuvn=0M = \boldsymbol \sigma_{uv} \cdot \boldsymbol n = 0

N=σvvn=2/b21+4u2a4+4v2b4N = \boldsymbol \sigma_{vv} \cdot \boldsymbol n = \frac{2/b^2}{\sqrt{1 + \frac{4u^2}{a^4} + \frac{4v^2}{b^4}}}

# 曲率

K=LNM2EGF2=4a2b2(1+4u2a4+4v2b4)2K = \frac{LN - M^2}{EG - F^2} = \frac{4}{a^2 b^2 (1 + \frac{4u^2}{a^4} + \frac{4v^2}{b^4})^2}

H=EN2FM+GL2(EGF2)=(a2+b2+4v2)a2+(a2+b2+4u2)b2a2b2(1+4u2a4+4v2b4)3/2H = \frac{EN - 2FM + GL}{2(EG - F^2)} = \frac{(a^2 + b^2 + 4v^2) a^2 + (a^2 + b^2 + 4u^2) b^2}{a^2 b^2 (1 + \frac{4u^2}{a^4} + \frac{4v^2}{b^4})^{3/2}}

κ1=2/a2(1+4u2a4+4v2b4)3/2,κ2=2/b2(1+4u2a4+4v2b4)3/2\kappa_1 = \frac{2/a^2}{(1 + \frac{4u^2}{a^4} + \frac{4v^2}{b^4})^{3/2}},\quad \kappa_2 = \frac{2/b^2}{(1 + \frac{4u^2}{a^4} + \frac{4v^2}{b^4})^{3/2}}

# 双曲抛物面 Hyperbolic Paraboloid

# 曲面方程与参数表示

双曲抛物面
a,b>0,D=R2a,b > 0,\quad D = \mathbb R^2

f(x,y,z)=x2a2y2b2z=0,σ(u,v)=(uvu2a2v2b2)f(x,y,z) = \frac{x^2}{a^2} - \frac{y^2}{b^2} - z = 0,\quad \boldsymbol \sigma(u,v) = \begin{pmatrix} u \\ v \\ \frac{u^2}{a^2} - \frac{v^2}{b^2} \end{pmatrix}

# 正向法向量场

σu×σv=(102ua2)×(012vb2)=(2ua22vb21)\boldsymbol \sigma_u \times \boldsymbol \sigma_v = \begin{pmatrix} 1 \\ 0 \\ \frac{2u}{a^2} \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ -\frac{2v}{b^2} \end{pmatrix} = \begin{pmatrix} \frac{2u}{a^2} \\ -\frac{2v}{b^2} \\ 1 \end{pmatrix}

n(σ(u,v))=σu×σvσu×σv=11+4u2a4+4v2b4(2ua22vb21)\boldsymbol n(\boldsymbol \sigma(u,v)) = \frac{\boldsymbol \sigma_u \times \boldsymbol \sigma_v}{\|\boldsymbol \sigma_u \times \boldsymbol \sigma_v\|} = \frac{1}{\sqrt{1 + \frac{4u^2}{a^4} + \frac{4v^2}{b^4}}} \begin{pmatrix} \frac{2u}{a^2} \\ -\frac{2v}{b^2} \\ 1 \end{pmatrix}

# 第一基本量

E=σuσu=1+4u2a4E = \boldsymbol \sigma_u \cdot \boldsymbol \sigma_u = 1 + \frac{4u^2}{a^4}

F=σuσv=4uva2b2,F = \boldsymbol \sigma_u \cdot \boldsymbol \sigma_v = -\frac{4uv}{a^2 b^2},

G=σvσv=1+4v2b4G = \boldsymbol \sigma_v \cdot \boldsymbol \sigma_v = 1 + \frac{4v^2}{b^4}

# 第二基本量

σuu=(002a2),σuv=(000),σvv=(002b2)\boldsymbol \sigma_{uu} = \begin{pmatrix} 0 \\ 0 \\ \frac{2}{a^2} \end{pmatrix},\quad \boldsymbol \sigma_{uv} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},\quad \boldsymbol \sigma_{vv} = \begin{pmatrix} 0 \\ 0 \\ -\frac{2}{b^2} \end{pmatrix}

L=σuun=2/a21+4u2a4+4v2b4L = \boldsymbol \sigma_{uu} \cdot \boldsymbol n = \frac{2/a^2}{\sqrt{1 + \frac{4u^2}{a^4} + \frac{4v^2}{b^4}}}

M=σuvn=0M = \boldsymbol \sigma_{uv} \cdot \boldsymbol n = 0

N=σvvn=2/b21+4u2a4+4v2b4N = \boldsymbol \sigma_{vv} \cdot \boldsymbol n = \frac{-2/b^2}{\sqrt{1 + \frac{4u^2}{a^4} + \frac{4v^2}{b^4}}}

# 曲率

K=LNM2EGF2=4a2b2(1+4u2a4+4v2b4)2K = \frac{LN - M^2}{EG - F^2} = \frac{-4}{a^2 b^2 (1 + \frac{4u^2}{a^4} + \frac{4v^2}{b^4})^2}

H=EN2FM+GL2(EGF2)=(a2b24v2)a2+(b2a2+4u2)b2a2b2(1+4u2a4+4v2b4)3/2H = \frac{EN - 2FM + GL}{2(EG - F^2)} = \frac{(a^2 - b^2 - 4v^2) a^2 + (b^2 - a^2 + 4u^2) b^2}{a^2 b^2 (1 + \frac{4u^2}{a^4} + \frac{4v^2}{b^4})^{3/2}}

κ1=2/a2(1+4u2a4+4v2b4)3/2,κ2=2/b2(1+4u2a4+4v2b4)3/2\kappa_1 = \frac{2/a^2}{(1 + \frac{4u^2}{a^4} + \frac{4v^2}{b^4})^{3/2}},\quad \kappa_2 = \frac{-2/b^2}{(1 + \frac{4u^2}{a^4} + \frac{4v^2}{b^4})^{3/2}}

# 柱面 Cylinder

# 曲面方程与参数表示

柱面
r>0,D=R×(0,2π)r > 0,\quad D = \mathbb R \times (0,2\pi)

f(x,y,z)=x2+y2r2=0,σ(u,v)=(rcosvrsinvu)f(x,y,z) = x^2 + y^2 - r^2 = 0,\quad \boldsymbol \sigma(u,v) = \begin{pmatrix} r \cos v \\ r \sin v \\ u \end{pmatrix}

# 正向法向量场

σu×σv=(rsinvrcosv0)×(001)=(rcosvrsinv0)\boldsymbol \sigma_u \times \boldsymbol \sigma_v = \begin{pmatrix} -r \sin v \\ r \cos v \\ 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} r \cos v \\ r \sin v \\ 0 \end{pmatrix}

n(σ(u,v))=σu×σvσu×σv=1r2cos2v+r2sin2v(rcosvrsinv0)=(cosvsinv0)\boldsymbol n(\boldsymbol \sigma(u,v)) = \frac{\boldsymbol \sigma_u \times \boldsymbol \sigma_v}{\|\boldsymbol \sigma_u \times \boldsymbol \sigma_v\|} = \frac{1}{\sqrt{r^2 \cos^2 v + r^2 \sin^2 v}} \begin{pmatrix} r \cos v \\ r \sin v \\ 0 \end{pmatrix} = \begin{pmatrix} \cos v \\ \sin v \\ 0 \end{pmatrix}

# 第一基本量

E=σuσu=1E = \boldsymbol \sigma_u \cdot \boldsymbol \sigma_u = 1

F=σuσv=0F = \boldsymbol \sigma_u \cdot \boldsymbol \sigma_v = 0

G=σvσv=r2G = \boldsymbol \sigma_v \cdot \boldsymbol \sigma_v = r^2

# 第二基本量

σuu=0,σuv=(000),σvv=(002)\boldsymbol \sigma_{uu} = \boldsymbol 0,\quad \boldsymbol \sigma_{uv} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},\quad \boldsymbol \sigma_{vv} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}

L=σuun=0L = \boldsymbol \sigma_{uu} \cdot \boldsymbol n = 0

M=σuvn=0M = \boldsymbol \sigma_{uv} \cdot \boldsymbol n = 0

N=σvvn=2r2cos2v+r2sin2v=2rN = \boldsymbol \sigma_{vv} \cdot \boldsymbol n = \frac{2}{\sqrt{r^2 \cos^2 v + r^2 \sin^2 v}} = \frac{2}{r}

# 曲率

K=LNM2EGF2=0K = \frac{LN - M^2}{EG - F^2} = 0

H=EN2FM+GL2(EGF2)=12rH = \frac{EN - 2FM + GL}{2(EG - F^2)} = \frac{1}{2r}

κ1=0,κ2=1r\kappa_1 = 0,\quad \kappa_2 = \frac{1}{r}

# 三次柱面 Cubic Cylinder

# 曲面方程与参数表示

三次柱面
D=R2D = \mathbb R^2

f(x,y,z)=y2x3=0,σ(u,v)=(uvv2u3)f(x,y,z) = y^2 - x^3 = 0,\quad \boldsymbol \sigma(u,v) = \begin{pmatrix} u \\ v \\ v^2 - u^3 \end{pmatrix}

# 正向法向量场

σu×σv=(103u2)×(012v)=(3u22v1)\boldsymbol \sigma_u \times \boldsymbol \sigma_v = \begin{pmatrix} 1 \\ 0 \\ -3u^2 \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ 2v \end{pmatrix} = \begin{pmatrix} 3u^2 \\ -2v \\ 1 \end{pmatrix}

n(σ(u,v))=σu×σvσu×σv=19u4+4v2+1(3u22v1)\boldsymbol n(\boldsymbol \sigma(u,v)) = \frac{\boldsymbol \sigma_u \times \boldsymbol \sigma_v}{\|\boldsymbol \sigma_u \times \boldsymbol \sigma_v\|} = \frac{1}{\sqrt{9u^4 + 4v^2 + 1}} \begin{pmatrix} 3u^2 \\ -2v \\ 1 \end{pmatrix}

# 第一基本量

E=σuσu=1+9u4E = \boldsymbol \sigma_u \cdot \boldsymbol \sigma_u = 1 + 9u^4

F=σuσv=6u2v,F = \boldsymbol \sigma_u \cdot \boldsymbol \sigma_v = -6u^2 v,

G=σvσv=1+4v2G = \boldsymbol \sigma_v \cdot \boldsymbol \sigma_v = 1 + 4v^2

# 第二基本量

σuu=(006u),σuv=(000),σvv=(002)\boldsymbol \sigma_{uu} = \begin{pmatrix} 0 \\ 0 \\ -6u \end{pmatrix},\quad \boldsymbol \sigma_{uv} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},\quad \boldsymbol \sigma_{vv} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}

L=σuun=6u9u4+4v2+1L = \boldsymbol \sigma_{uu} \cdot \boldsymbol n = \frac{-6u}{\sqrt{9u^4 + 4v^2 + 1}}

M=σuvn=0M = \boldsymbol \sigma_{uv} \cdot \boldsymbol n = 0

N=σvvn=29u4+4v2+1N = \boldsymbol \sigma_{vv} \cdot \boldsymbol n = \frac{2}{\sqrt{9u^4 + 4v^2 + 1}}

# 曲率

K=LNM2EGF2=12u(9u4+4v2+1)2K = \frac{LN - M^2}{EG - F^2} = \frac{-12u}{(9u^4 + 4v^2 + 1)^2}

H=EN2FM+GL2(EGF2)=(6u)(1+4v2)+(1+9u4)(2)2(9u4+4v2+1)3/2H = \frac{EN - 2FM + GL}{2(EG - F^2)} = \frac{(-6u)(1 + 4v^2) + (1 + 9u^4)(2)}{2(9u^4 + 4v^2 + 1)^{3/2}}

κ1=3u229u4+4v2+1(9u4+4v2+1)3/2,κ2=3u2+29u4+4v2+1(9u4+4v2+1)3/2\kappa_1 = \frac{3u^2 - 2 \sqrt{9u^4 + 4v^2 + 1}}{(9u^4 + 4v^2 + 1)^{3/2}},\quad \kappa_2 = \frac{3u^2 + 2 \sqrt{9u^4 + 4v^2 + 1}}{(9u^4 + 4v^2 + 1)^{3/2}}

# 对数形曲面

# 曲面方程与参数表示

对数形曲面
D = \

f(x,y,z)=ezcosxcosy=0,σ(u,v)=(uvlncosvcosu)f(x,y,z) = e^z \cos x - \cos y = 0,\quad \boldsymbol \sigma(u,v) = \begin{pmatrix} u \\ v \\ \ln\frac{\cos v}{\cos u} \end{pmatrix}

# 正向法向量场

σu×σv=(10tanu)×(01tanv)=(tanvtanu1)\boldsymbol \sigma_u \times \boldsymbol \sigma_v = \begin{pmatrix} 1 \\ 0 \\ \tan u \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ -\tan v \end{pmatrix} = \begin{pmatrix} -\tan v \\ -\tan u \\ 1 \end{pmatrix}

n(σ(u,v))=σu×σvσu×σv=1tan2u+tan2v+1(tanvtanu1)\boldsymbol n(\boldsymbol \sigma(u,v)) = \frac{\boldsymbol \sigma_u \times \boldsymbol \sigma_v}{\|\boldsymbol \sigma_u \times \boldsymbol \sigma_v\|} = \frac{1}{\sqrt{\tan^2 u + \tan^2 v + 1}} \begin{pmatrix} -\tan v \\ -\tan u \\ 1 \end{pmatrix}

# 第一基本量

E=σuσu=1+tan2uE = \boldsymbol \sigma_u \cdot \boldsymbol \sigma_u = 1 + \tan^2 u

F=σuσv=tanutanv,F = \boldsymbol \sigma_u \cdot \boldsymbol \sigma_v = \tan u \tan v,

G=σvσv=1+tan2vG = \boldsymbol \sigma_v \cdot \boldsymbol \sigma_v = 1 + \tan^2 v

# 第二基本量

σuu=(00sec2u),σuv=(000),σvv=(00sec2v)\boldsymbol \sigma_{uu} = \begin{pmatrix} 0 \\ 0 \\ \sec^2 u \end{pmatrix},\quad \boldsymbol \sigma_{uv} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},\quad \boldsymbol \sigma_{vv} = \begin{pmatrix} 0 \\ 0 \\ -\sec^2 v \end{pmatrix}

L=σuun=sec2utan2u+tan2v+1L = \boldsymbol \sigma_{uu} \cdot \boldsymbol n = \frac{\sec^2 u}{\sqrt{\tan^2 u + \tan^2 v + 1}}

M=σuvn=0M = \boldsymbol \sigma_{uv} \cdot \boldsymbol n = 0

N=σvvn=sec2vtan2u+tan2v+1N = \boldsymbol \sigma_{vv} \cdot \boldsymbol n = \frac{-\sec^2 v}{\sqrt{\tan^2 u + \tan^2 v + 1}}

# 曲率

K=LNM2EGF2=1(1+tan2u+tan2v)2K = \frac{LN - M^2}{EG - F^2} = \frac{-1}{(1 + \tan^2 u + \tan^2 v)^2}

H=EN2FM+GL2(EGF2)=(1+tan2v)sec2u(1+tan2u)sec2v2(1+tan2u+tan2v)3/2H = \frac{EN - 2FM + GL}{2(EG - F^2)} = \frac{(1 + \tan^2 v) \sec^2 u - (1 + \tan^2 u) \sec^2 v}{2(1 + \tan^2 u + \tan^2 v)^{3/2}}

κ1=sec2u1+tan2u+tan2v(1+tan2u+tan2v)3/2,κ2=sec2u+1+tan2u+tan2v(1+tan2u+tan2v)3/2\kappa_1 = \frac{\sec^2 u - \sqrt{1 + \tan^2 u + \tan^2 v}}{(1 + \tan^2 u + \tan^2 v)^{3/2}},\quad \kappa_2 = \frac{\sec^2 u + \sqrt{1 + \tan^2 u + \tan^2 v}}{(1 + \tan^2 u + \tan^2 v)^{3/2}}