# 复变函数

注意要求点位于内部

定义
对于复变函数 f:D(C)C,z0Df: D (\subset \mathbb C) \to \mathbb{C},\ z_0 \in D^\circ,如果极限

limzz0f(z)f(z0)zz0=(limζ0f(z0+ζ)f(z0)ζ)\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \left( \lim_{\zeta \to 0} \frac{f(z_0 + \zeta) - f(z_0)}{\zeta} \right)

存在,则称 ffz0z_0复可微,称该极限为 ffz0z_0 处的微分系数,记为 f(z0)f'(z_0)dfdz(z0)\frac{df}{dz}(z_0)

定义
ffDD 上每一点都复可微,则称 ffDD正则
特别地,D=CD = \mathbb{C} 时,称 ff整函数

定理 Cauchy-Riemann 方程
f:DC,z0D,x0=(z0),y0=(z0)f: D \to \mathbb{C},\ z_0 \in D,\ x_0 = \Re(z_0),\ y_0 = \Im(z_0)
R2C\mathbb R^2 \to \mathbb C 的同胚映射 J(x,y)=x+iyJ(x,y) = x + iy
f~:=fJ,u:=(f~),v:=(f~)\tilde{f} := f \circ J,\ u := \Re(\tilde{f}),\ v := \Im(\tilde{f})
f(z(=x+iy))=f~(x,y)=u(x,y)+iv(x,y)f(z (= x + iy)) = \tilde{f}(x,y)= u(x,y) + iv(x,y)

以下条件等价:

  • ffz0z_0 处复可微
  • (u,v)(u,v)(x0,y0)(x_0,y_0) 处 Frechet 可微,且满足 Cauchy-Riemann 方程

ux(x0,y0)=vy(x0,y0)uy(x0,y0)=vx(x0,y0)\frac{\partial u}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0) \\ \frac{\partial u}{\partial y}(x_0, y_0 ) = -\frac{\partial v}{\partial x}(x_0, y_0)

并且此时有

f(z0)=ux(x0,y0)+ivx(x0,y0)=vy(x0,y0)iuy(x0,y0)f'(z_0) = \frac{\partial u}{\partial x}(x_0, y_0) + i \frac{\partial v}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0) - i \frac{\partial u}{\partial y}(x_0, y_0)

使用 C-R 方程前一定要记得检查 Frechet 可微性,非常容易忘
以下是一个满足 C-R 方程,但是 Frechet 不可微从而导致不能复微分的例子

f(z)={(z)2z,z00,z=0f(z) = \begin{cases} \frac{(\overline z)^2}{z}, & z \neq 0 \\ 0, & z = 0 \end{cases}

证明

(满足 C-R 方程)
z=x+iyz = x + iyx=0x = 0f=(xiy)2x+iy=x33xy+y3ix2yx2+y2f = \frac{(x - iy)^2}{x + iy} = \frac{x^3 - 3xy + y -3ix^2y}{x^2 + y^2}
u=f=x33xy+yx2+y2,v=f=3x2yx2+y2u = \Re \circ f = \frac{x^3 - 3xy + y}{x^2 + y^2},\ v = \Im \circ f = \frac{-3x^2y}{x^2 + y^2}
计算偏导

ux=x4+6x2y3y2(x2+y2)2,uy=3x22xy+y2(x2+y2)2u_x = \frac{x^4 + 6x^2y - 3y^2}{(x^2 + y^2)^2},\quad u_y = \frac{-3x^2 - 2xy + y^2}{(x^2 + y^2)^2}

vx=6xy3(x2+y2)2,vy=3x4+3x2y2(x2+y2)2v_x = \frac{-6xy^3}{(x^2 + y^2)^2},\quad v_y = \frac{-3x^4 + 3x^2y^2}{(x^2 + y^2)^2}

代入原点,可得 C-R 方程

ux(0,0)=vy(0,0)=0uy(0,0)=vx(0,0)=0u_x(0,0) = v_y(0,0) = 0 \\ u_y(0,0) = -v_x(0,0) = 0

(Frechet 不可微)
(x,y)(0,0)(x,y) \to (0,0),考虑 u,vu,v 的微分系数
x=0x = 0

lim(x,y)(0,0)u(x,y)u(0,0)(x,y)=limy0yy20y=limy01yy=+\lim_{(x,y) \to (0,0)} \frac{\|u(x,y) - u(0,0)\|}{\|(x,y)\|} = \lim_{y \to 0} \frac{\frac{y}{y^2} - 0}{|y|} = \lim_{y \to 0} \frac{1}{y|y|} = +\infty

y=0y = 0

lim(x,y)(0,0)u(x,y)u(0,0)(x,y)=limx0x3x20x=limx0x=0\lim_{(x,y) \to (0,0)} \frac{\|u(x,y) - u(0,0)\|}{\|(x,y)\|} = \lim_{x \to 0} \frac{\frac{x^3}{x^2} - 0}{|x|} = \lim_{x \to 0} x = 0

所以 uu(0,0)(0,0) 处不满足 Frechet 可微
同理
x=0x = 0

lim(x,y)(0,0)v(x,y)v(0,0)(x,y)=limy000y=0\lim_{(x,y) \to (0,0)} \frac{\|v(x,y) - v(0,0)\|}{\|(x,y)\|} = \lim_{y \to 0} \frac{0 - 0}{|y|} = 0

y=xy = x

lim(x,y)(0,0)v(x,y)v(0,0)(x,y)=limx03x32x202x=limx03x22x=±322\lim_{(x,y) \to (0,0)} \frac{\|v(x,y) - v(0,0)\|}{\|(x,y)\|} = \lim_{x \to 0} \frac{\frac{-3x^3}{2x^2} - 0}{\sqrt{2}|x|} = \lim_{x \to 0} \frac{-3x}{2\sqrt{2}|x|} = \pm \frac{3}{2\sqrt{2}}

所以 vv(0,0)(0,0) 处也不满足 Frechet 可微
(复不可微)
z=0\Re z = 0

limz0f(z)f(0)z0=limiy0(iy)2iy0iy=limy0iyiy=1\lim_{z \to 0} \frac{f(z) - f(0)}{z - 0} = \lim_{iy \to 0} \frac{\frac{(iy)^2}{iy} - 0}{iy} = \lim_{y \to 0} \frac{iy}{iy} = 1

y=xy = x

limz0f(z)f(0)z0=limx0(xix)2x+ix0x+ix=limx0(1i)21+i=1i1\lim_{z \to 0} \frac{f(z) - f(0)}{z - 0} = \lim_{x \to 0} \frac{\frac{(x - ix)^2}{x + ix} - 0}{x + ix} = \lim_{x \to 0} \frac{(1 - i)^2}{1 + i} = 1 - i \neq 1

所以在原点处的复微分不存在 \quad \square

命题
Ω\Omega 为领域,f:ΩCf: \Omega \to \mathbb{C}Ω\Omega 上正则
以下条件只要有一个成立,ffΩ\Omega 上恒为常数

  • zΩ,f(z)=0\forall z \in \Omega, f'(z) = 0
  • (f)\Re(f)Ω\Omega 上恒为常数
  • (f)\Im(f)Ω\Omega 上恒为常数
  • f|f|Ω\Omega 上恒为常数