# 内积

向量与向量之间最为重要的运算就是内积与外积。

定义
对于 Rn\mathbb R^n 内的两元 a=(a1,a2,,an),b=(b1,b2,,bn)\boldsymbol a = (a_1, a_2, \dots, a_n),\ \boldsymbol b = (b_1, b_2, \dots, b_n)
定义其 内积 (dot product)

ab=i=1naibi=a1b1+a2b2++anbn\boldsymbol a \cdot \boldsymbol b = \sum_{i=1}^n a_i b_i = a_1 b_1 + a_2 b_2 + \dots + a_n b_n

并且称满足

ab=abcosθ\boldsymbol a \cdot \boldsymbol b = \|\boldsymbol a\| \|\boldsymbol b\| \cos \theta

θ\thetaa\boldsymbol ab\boldsymbol b 之间的夹角。

注意,根据内积的定义,可以得到:

  • a=aa\|\boldsymbol a\| = \sqrt{\boldsymbol a \cdot \boldsymbol a} \quad

# 向量积

另一个运算是向量积
向量积多数情况下也被称为外积
但是注意外积其实是包含多个内容,向量积(cross product),楔积(wedge product)和张量积(tensor product)

一般来说在非微分流形的背景下,外积默认是向量积。
向量积只能定义在三维空间下

定义
对于 R3\mathbb R^3 内的两元 a=(a1,a2,a3),b=(b1,b2,b3)\boldsymbol a = (a_1, a_2, a_3),\ \boldsymbol b = (b_1, b_2, b_3)
定义其 向量积 (cross product)

a×b=(a2a3b2b3a1a3b1b3a1a2b1b2)=(a2b3a3b2a3b1a1b3a1b2a2b1)a \times b = \begin{pmatrix} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \\ -\begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \\ \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \end{pmatrix} = \begin{pmatrix} a_2 b_3 - a_3 b_2 \\ a_3 b_1 - a_1 b_3 \\ a_1 b_2 - a_2 b_1 \end{pmatrix}

很多地方也会将向量积的定义写为全行列式形式,尤其是偏老式的教材

a×b=ijka1a2a3b1b2b3=a2a3b2b3ia1a3b1b3j+a1a2b1b2k\boldsymbol a \times \boldsymbol b = \begin{vmatrix} \boldsymbol i & \boldsymbol j & \boldsymbol k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \boldsymbol i - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \boldsymbol j + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \boldsymbol k

其中 i=(1,0,0),j=(0,1,0),k=(0,0,1)\boldsymbol i = (1, 0, 0), \boldsymbol j = (0, 1, 0), \boldsymbol k = (0, 0, 1) 分别是 x,y,zx, y, z 轴的单位向量。
这样的好处是方便记忆,但是不禁让人思考在同一个行列式里面同时使用实数和向量两个不同类型的元素是否合理。

命题(外积的计算性质)
对于向量 a,b,c\boldsymbol a, \boldsymbol b, \boldsymbol c 和标量 kk,有

  • a×b=b×a\boldsymbol a \times \boldsymbol b = -\boldsymbol b \times \boldsymbol a
  • a×(b+c)=a×b+a×c\boldsymbol a \times (\boldsymbol b + \boldsymbol c) = \boldsymbol a \times \boldsymbol b + \boldsymbol a \times \boldsymbol c
  • (ka)×b=k(a×b)=a×(kb)(k\boldsymbol a) \times \boldsymbol b = k(\boldsymbol a \times \boldsymbol b) = \boldsymbol a \times (k \boldsymbol b)
证明

(1)

a×b=ijka1a2a3b1b2b3=ijkb1b2b3a1a2a3=b×a\boldsymbol a \times \boldsymbol b = \begin{vmatrix} \boldsymbol i & \boldsymbol j & \boldsymbol k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = - \begin{vmatrix} \boldsymbol i & \boldsymbol j & \boldsymbol k \\ b_1 & b_2 & b_3 \\ a_1 & a_2 & a_3 \end{vmatrix} = -\boldsymbol b \times \boldsymbol a

(2)

a×(b+c)=ijka1a2a3b1+c1b2+c2b3+c3=ijka1a2a3b1b2b3+ijka1a2a3c1c2c3=a×b+a×c\boldsymbol a \times (\boldsymbol b + \boldsymbol c) = \begin{vmatrix} \boldsymbol i & \boldsymbol j & \boldsymbol k \\ a_1 & a_2 & a_3 \\ b_1 + c_1 & b_2 + c_2 & b_3 + c_3 \end{vmatrix} = \begin{vmatrix} \boldsymbol i & \boldsymbol j & \boldsymbol k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} + \begin{vmatrix} \boldsymbol i & \boldsymbol j & \boldsymbol k \\ a_1 & a_2 & a_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = \boldsymbol a \times \boldsymbol b + \boldsymbol a \times \boldsymbol c

(3)

(ka)×b=ijkka1ka2ka3b1b2b3=kijka1a2a3b1b2b3=k(a×b)(k\boldsymbol a) \times \boldsymbol b = \begin{vmatrix} \boldsymbol i & \boldsymbol j & \boldsymbol k \\ k a_1 & k a_2 & k a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = k \begin{vmatrix} \boldsymbol i & \boldsymbol j & \boldsymbol k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = k(\boldsymbol a \times \boldsymbol b)

同理可证 a×(kb)=k(a×b)\boldsymbol a \times (k \boldsymbol b) = k(\boldsymbol a \times \boldsymbol b)

# 标量三重积

内积和外积联合在一起,可以获得更丰富的计算

定义(标量三重积)
对于 R3\mathbb R^3 内的三元 a,b,c\boldsymbol a,\ \boldsymbol b,\ \boldsymbol c
定义其 标量三重积 (Scalar Triple Product)「スカーラ三重積」

[a,b,c]=a(b×c)[\boldsymbol a, \boldsymbol b, \boldsymbol c] = \boldsymbol a \cdot (\boldsymbol b \times \boldsymbol c)

标量三重积具有以下性质

命题
对于 R3\mathbb R^3 内的三元 a,b,c\boldsymbol a,\ \boldsymbol b,\ \boldsymbol c

[a,b,c]=abc=a1a2a3b1b2b3c1c2c3[\boldsymbol a, \boldsymbol b, \boldsymbol c] = \begin{vmatrix}\boldsymbol a \cdot \boldsymbol b \cdot \boldsymbol c\end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \quad

  • 轮换对称性

[a,b,c]=[b,c,a]=[c,a,b][\boldsymbol a, \boldsymbol b, \boldsymbol c] = [\boldsymbol b, \boldsymbol c, \boldsymbol a] = [\boldsymbol c, \boldsymbol a, \boldsymbol b]

[a,b,c]0a,b,c线性无关[\boldsymbol a, \boldsymbol b, \boldsymbol c] \neq 0 \iff \boldsymbol a, \boldsymbol b, \boldsymbol c \ 线性无关

证明

以下 a=(a1,a2,a3),b=(b1,b2,b3),c=(c1,c2,c3)\boldsymbol a = (a_1, a_2, a_3),\ \boldsymbol b = (b_1, b_2, b_3),\ \boldsymbol c = (c_1, c_2, c_3)
(1)

[a,b,c]=a(b×c)=(a1a2a3)(a2a3b2b3a1a3b1b3a1a2b1b2)=aa2a3b2b3ba1a3b1b3+ca1a2b1b2=a1a2a3b1b2b3c1c2c3[\boldsymbol a, \boldsymbol b, \boldsymbol c] = \boldsymbol a \cdot (\boldsymbol b \times \boldsymbol c) = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \cdot \begin{pmatrix} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \\ -\begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \\ \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \end{pmatrix} = a\begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} - b\begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} + c\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}

(2) 每次轮换都需要两次列交换,由行列式的性质可知值不变
(3) 如果等于零,意味着可以通过列基本变换将行列式化为有一个全零的列,这等价于存在至少一个向量可以由另外两个向量线性表示,因此线性相关。反之亦然。

# 向量三重积

定义
对于 R3\mathbb R^3 内的三元 a,b,c\boldsymbol a,\ \boldsymbol b,\ \boldsymbol c
定义其 向量三重积 (Vector Triple Product)「ベクトル三重積」

a×(b×c)\boldsymbol a \times (\boldsymbol b \times \boldsymbol c)

有以下向量三重积恒等式,建议记下来

命题

a×(b×c)=(ac)b(ab)c\boldsymbol a \times (\boldsymbol b \times \boldsymbol c) = (\boldsymbol a \cdot \boldsymbol c) \boldsymbol b - (\boldsymbol a \cdot \boldsymbol b) \boldsymbol c

证明

以下 a=(a1,a2,a3),b=(b1,b2,b3),c=(c1,c2,c3)\boldsymbol a = (a_1, a_2, a_3),\ \boldsymbol b = (b_1, b_2, b_3),\ \boldsymbol c = (c_1, c_2, c_3)

a×(b×c)=ijka1a2a3b2b3c2c3b1b3c1c3b1b2c1c2=(a2b1b2c1c2+a3b1b3c1c3(a1b1b2c1c2+a3b2b3c2c3)a1b1b3c1c3a2b2b3c2c3)=((a2c2+a3c3)b1(a2b2+a3b3)c1(a3c3+a1c1)b2(a3b3+a1b1)c2(a1c1+a2c2)b3(a1b1+a2b2)c3)=(ac)b(ab)c\begin{aligned} \boldsymbol a \times (\boldsymbol b \times \boldsymbol c) &= \begin{vmatrix} \boldsymbol i & \boldsymbol j & \boldsymbol k \\ a_1 & a_2 & a_3 \\ \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} & -\begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} & \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix} \end{vmatrix} \\ &= \begin{pmatrix} a_2 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} \\ -\left(a_1 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix} + a_3 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix}\right) \\ a_1 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} \end{pmatrix} \\ &= \begin{pmatrix} (a_2 c_2 + a_3 c_3) b_1 - (a_2 b_2 + a_3 b_3) c_1 \\ (a_3 c_3 + a_1 c_1) b_2 - (a_3 b_3 + a_1 b_1) c_2 \\ (a_1 c_1 + a_2 c_2) b_3 - (a_1 b_1 + a_2 b_2) c_3 \end{pmatrix} \\ &= (\boldsymbol a \cdot \boldsymbol c) \boldsymbol b - (\boldsymbol a \cdot \boldsymbol b) \boldsymbol c \end{aligned}

# 内积与向量积共存的计算

这是非常重要的计算性质。在今后曲线曲面几何的分析中,内积和向量积交互混合出现的情况非常多见,需要有能力对其进行计算化简

命题
对于 a,b,c,dR3\boldsymbol a, \boldsymbol b, \boldsymbol c, \boldsymbol d \in \mathbb R^3,有

  • 向量积的内积

(a×b)(c×d)=(ac)(bd)(ad)(bc)(\boldsymbol a \times \boldsymbol b) \cdot (\boldsymbol c \times \boldsymbol d) = (\boldsymbol a \cdot \boldsymbol c)(\boldsymbol b \cdot \boldsymbol d) - (\boldsymbol a \cdot \boldsymbol d)(\boldsymbol b \cdot \boldsymbol c)

  • 向量积的向量积

(a×b)×(c×d)=[a,b,d]c[a,b,c]d(\boldsymbol a \times \boldsymbol b) \times (\boldsymbol c \times \boldsymbol d) = [\boldsymbol a, \boldsymbol b, \boldsymbol d] \boldsymbol c - [\boldsymbol a, \boldsymbol b, \boldsymbol c] \boldsymbol d

  • θ\thetaa\boldsymbol ab\boldsymbol b 之间的夹角)

a×b2=a2b2(ab)2=a2b2(1cos2θ)=a2b2sin2θ\|a \times b\|^2 = \|\boldsymbol a\|^2 \|\boldsymbol b\|^2 - (\boldsymbol a \cdot \boldsymbol b)^2 = \|\boldsymbol a\|^2 \|\boldsymbol b\|^2 (1 - \cos^2 \theta) = \|\boldsymbol a\|^2 \|\boldsymbol b\|^2 \sin^2 \theta

  • 雅可比恒等式

a×(b×c)+b×(c×a)+c×(a×b)=0\boldsymbol a \times (\boldsymbol b \times \boldsymbol c) + \boldsymbol b \times (\boldsymbol c \times \boldsymbol a) + \boldsymbol c \times (\boldsymbol a \times \boldsymbol b) = \boldsymbol 0

证明

(1) 利用标量三重积的轮换对称,和向量三重积恒等式得到

(a×b)(c×d)=[a×b,c,d]=[c,d,a×b]=c(d×(a×b))=c[(db)a(da)b]=(db)(ca)(da)(cb)=(ac)(bd)(ad)(bc)\begin{aligned} (\boldsymbol a \times \boldsymbol b) \cdot (\boldsymbol c \times \boldsymbol d) &= [\boldsymbol a \times \boldsymbol b, \boldsymbol c, \boldsymbol d] \\ &= [\boldsymbol c, \boldsymbol d, \boldsymbol a \times \boldsymbol b] \\ &= \boldsymbol c \cdot (\boldsymbol d \times (\boldsymbol a \times \boldsymbol b)) \\ &= \boldsymbol c \cdot [(\boldsymbol d \cdot \boldsymbol b) \boldsymbol a - (\boldsymbol d \cdot \boldsymbol a) \boldsymbol b] \\ &= (\boldsymbol d \cdot \boldsymbol b)(\boldsymbol c \cdot \boldsymbol a) - (\boldsymbol d \cdot \boldsymbol a)(\boldsymbol c \cdot \boldsymbol b) \\ &= (\boldsymbol a \cdot \boldsymbol c)(\boldsymbol b \cdot \boldsymbol d) - (\boldsymbol a \cdot \boldsymbol d)(\boldsymbol b \cdot \boldsymbol c) \end{aligned}

此处一定要注意内积没有结合律,一旦做了内积运算类型就会改变,成为实数(标量),因此类似于 c(db)a\boldsymbol c \cdot (\boldsymbol d \cdot \boldsymbol b) \boldsymbol a 这样的计算,应该把内积当作标量拉到前面,然后让真正的向量 a\boldsymbol a 参与内积运算。
(2) 也是利用向量三重积的恒等式

(a×b)×(c×d)={a(c×d)}b{b(c×d)}a=[a,c,d]b[b,c,d]a=[a,b,d]c[a,b,c]d\begin{aligned} (\boldsymbol a \times \boldsymbol b) \times (\boldsymbol c \times \boldsymbol d) &= \{ \boldsymbol a \cdot (\boldsymbol c \times \boldsymbol d) \} \boldsymbol b - \{ \boldsymbol b \cdot (\boldsymbol c \times \boldsymbol d) \} \boldsymbol a \\ &= [\boldsymbol a, \boldsymbol c, \boldsymbol d] \boldsymbol b - [\boldsymbol b, \boldsymbol c, \boldsymbol d] \boldsymbol a \\ &= [\boldsymbol a, \boldsymbol b, \boldsymbol d] \boldsymbol c - [\boldsymbol a, \boldsymbol b, \boldsymbol c] \boldsymbol d \end{aligned}

(3) 应用上一条

a×b2=(a×b)(a×b)=(aa)(bb)(ab)(ba)=a2b2(ab)2=a2b2a2b2cos2θ=a2b2(1cos2θ)=a2b2sin2θ\begin{aligned} \| \boldsymbol a \times \boldsymbol b \|^2 &= (\boldsymbol a \times \boldsymbol b) \cdot (\boldsymbol a \times \boldsymbol b) \\ &= (\boldsymbol a \cdot \boldsymbol a)(\boldsymbol b \cdot \boldsymbol b) - (\boldsymbol a \cdot \boldsymbol b)(\boldsymbol b \cdot \boldsymbol a) \\ &= \|\boldsymbol a\|^2 \|\boldsymbol b\|^2 - (\boldsymbol a \cdot \boldsymbol b)^2 \\ &= \|\boldsymbol a\|^2 \|\boldsymbol b\|^2 - \|\boldsymbol a\|^2 \|\boldsymbol b\|^2 \cos^2 \theta \\ &= \|\boldsymbol a\|^2 \|\boldsymbol b\|^2 (1 - \cos^2 \theta) \\ &= \|\boldsymbol a\|^2 \|\boldsymbol b\|^2 \sin^2 \theta \end{aligned}

(4)

a×(b×c)+b×(c×a)+c×(a×b)=(ac)b(ab)c+(ba)c(bc)a+(cb)a(ca)b=0\boldsymbol a \times (\boldsymbol b \times \boldsymbol c) + \boldsymbol b \times (\boldsymbol c \times \boldsymbol a) + \boldsymbol c \times (\boldsymbol a \times \boldsymbol b) = (\boldsymbol a \cdot \boldsymbol c) \boldsymbol b - (\boldsymbol a \cdot \boldsymbol b) \boldsymbol c + (\boldsymbol b \cdot \boldsymbol a) \boldsymbol c - (\boldsymbol b \cdot \boldsymbol c) \boldsymbol a + (\boldsymbol c \cdot \boldsymbol b) \boldsymbol a - (\boldsymbol c \cdot \boldsymbol a) \boldsymbol b = \boldsymbol 0

# 几何意义

命题

  • a,b\boldsymbol a, \boldsymbol bR3\mathbb R^3 内的两个独立的向量,此时 a×b\boldsymbol a \times \boldsymbol b 的方向垂直于 a,b\boldsymbol a, \boldsymbol b 所在的平面,且其长度等于以 a,b\boldsymbol a, \boldsymbol b 为邻边的平行四边形的面积。
  • a,b,c\boldsymbol a, \boldsymbol b, \boldsymbol cR3\mathbb R^3 内的三个独立的向量,此时 [a,b,c]|[\boldsymbol a, \boldsymbol b, \boldsymbol c]| 的值等于以 a,b,c\boldsymbol a, \boldsymbol b, \boldsymbol c 为邻边的平行六面体的体积。
证明

(1) 以 a,b\boldsymbol a, \boldsymbol b 为邻边的平行四边形的面积

S=absinθS = \|\boldsymbol a\| \|\boldsymbol b\| \sin \theta

其中 θ\thetaa,b\boldsymbol a, \boldsymbol b 之间的夹角。
而另一边

a×b=a2b2sin2θ=absinθ=S\|\boldsymbol a \times \boldsymbol b\| = \sqrt{\|\boldsymbol a\|^2 \|\boldsymbol b\|^2 sin^2 \theta} = \|\boldsymbol a\| \|\boldsymbol b\| \sin \theta = S

(2) 令张成的平行六面体的高为 hh,z 轴夹角为 ϕ\phi,则体积

V=Sh=a×bccosϕ=(a×b)c=[a,b,c]V = S h = \|\boldsymbol a \times \boldsymbol b\| \|\boldsymbol c\| \cos \phi = \|(\boldsymbol a \times \boldsymbol b) \cdot \boldsymbol c\| = |[\boldsymbol a, \boldsymbol b, \boldsymbol c]|

此处有绝对值的原因是 cosϕcos \phi 可能为负数